Hydrothermal synthesis and characterization of the praseodymium borate-nitrate Pr[B5O8(OH)(H2O)0.87]NO3·2H2O

2017 ◽  
Vol 72 (9) ◽  
pp. 677-685
Author(s):  
Teresa S. Ortner ◽  
Hubert Huppertz

AbstractThe praseodymium borate-nitrate Pr[B5O8(OH)(H2O)0.87]NO3·2H2O was obtained in a hydrothermal synthesis. It crystallizes monoclinically in the space groupP21/n(no. 14) with four formula units (Z=4) and unit cell parameters ofa=641.9(3),b=1551.8(7),c=1068.4(5) pm, withβ=90.54(2)° yieldingV=1.0643(8) nm3. The defect variant constitutes the missing member in the series of isostructural, early rare earth borate-nitrates of the compositionRE[B5O8(OH)(H2O)x]NO3·2H2O [RE=La (x=0; 1), Ce (x=1), Nd (x=0.85), Sm (x=0)]. In addition to powder and single-crystal X-ray diffraction data, the novel borate-nitrate was characterized through IR and Raman spectroscopy.

2014 ◽  
Vol 29 (4) ◽  
pp. 379-382 ◽  
Author(s):  
Sandra Amaya ◽  
Johana Arboleda ◽  
Adriana Echavarría

A new trimetallic compound with formula (NH4)Ni2.4Co0.6O(OH)(MoO4)2•1.5H2O was obtained by hydrothermal synthesis. The solid was characterized by X-ray diffraction, thermal analysis (thermogravimetric analysis and differential thermal analysis), Fourier-transformed infrared spectroscopy, Laser Raman spectroscopy, and chemical analysis by atomic absorption, confirming the formation of the layered phase ϕy. Crystallographic studies showed that the compound obtained is trigonal with hexagonal unit-cell parameters, a = 6.0468 ± 0.0016 Å and c = 21.8433 ± 0.0001 Å, and space group R-3m.


1998 ◽  
Vol 12 (11) ◽  
pp. 427-431
Author(s):  
K. Jeyabalan ◽  
L. K. Kaliyaperumal ◽  
A. Sekar ◽  
J. Srinivas

Synthesis and characterization of A 2 CaCuO 5( A=Nd, Sm ) system is reported. Powder X-ray diffraction analysis shows that the compounds crystallizes in an orthorhombic crystal systems and the unit cell parameters are found to be a=6.399(9)Å, b=7.218(8) Å and c=12.167(17) Å for Nd 2 CaCuO 5 and a=5.872(8) Å, b=7.457(3) Å and c=12.682(18) Å for Sm 2 CaCuO 5.


2018 ◽  
Vol 74 (8) ◽  
pp. 936-943
Author(s):  
Galina V. Kiriukhina ◽  
Olga V. Yakubovich ◽  
Ekaterina M. Kochetkova ◽  
Olga V. Dimitrova ◽  
Anatoliy S. Volkov

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63 mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A + ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.


2012 ◽  
Vol 465 ◽  
pp. 76-79 ◽  
Author(s):  
Shuang Zhan ◽  
Xia Li

The novel Y2O3 nanoflowers were synthesized through a facile hydrothermal method without using any catalyst or template. The phase composition and the microstructure of as-prepared products were characterized by field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) as well as Fourier transform infrared spectrum. The formation mechanism for the Y2O3 flowers has been proposed.


2005 ◽  
Vol 494 ◽  
pp. 351-356 ◽  
Author(s):  
M.R. Todorović ◽  
U.B. Mioč ◽  
I. Holclajtner-Antunović ◽  
D. Šegan

It is known that various polyoxovanadates interact specifically with enzymes, which is the main way of their biochemical activity. Therefore we have synthesized ammonium decavanadate, (NH4)6V10O28·6H2O. The novel compound was characterized by elemental and thermal analysis, X-ray powder and single crystal diffraction and IR and Raman spectroscopy. Its conductive properties have been studied, too. The spectroscopic analysis has shown the presence of hydrogen bonds of different strengths. In order to improve the biochemical activity of this compound and having in mind the presence of strong hydrogen bonds, we essayed the synthesis of complex of polyoxovanadate with alanine. The obtained product was characterized by the mentioned methods.


2014 ◽  
Vol 70 (10) ◽  
pp. 1372-1375 ◽  
Author(s):  
Shanghua Fan ◽  
Defeng Li ◽  
Joy Fleming ◽  
Yuan Hong ◽  
Tao Chen ◽  
...  

7-Keto-8-aminopelargonic acid synthase (KAPA synthase; BioF) is an essential enzyme for mycobacterial growth that catalyses the first committed step in the biotin-synthesis pathway. It is a pyridoxal 5′-phosphate (PLP)-dependent enzyme and is a potential drug target. Here, the cloning, expression, purification and crystallization of KAPA synthase fromMycobacterium smegmatis(MsBioF) and the characterization of MsBioF crystals using X-ray diffraction are described. The crystals diffracted to 2.3 Å resolution and belonged to the monoclinic space groupP21, with unit-cell parametersa= 70.88,b= 91.68,c= 109.84 Å, β = 97.8°. According to the molecular weight of MsBioF, the unit-cell parameters and the self-rotation function map, four molecules are present in each asymmetric unit with aVMvalue of 2.06 Å3 Da−1and a solvent content of 40.20%.


2013 ◽  
Vol 1576 ◽  
Author(s):  
Jacob Castilow ◽  
Timothy W Zens ◽  
J. Matthew Mann ◽  
Joseph W. Kolis ◽  
Colin D. McMillen ◽  
...  

ABSTRACTHydrothermal synthesis of ThO2, UxTh1-xO2, and UOx at temperatures between 670°C and 700°C has been demonstrated. Synthesis at these temperatures is 50-80°C below prior growth studies and represents a new lower bound of successful growth. ThO2 single crystals of dimensions 6.49mm x 4.89mm x 3.89 mm and weighing 0.633g have been synthesized at average growth rates near 0.125mm/week. Single crystal UxTh1-xO2 crystals with mole fractions up to x≈0.30 have also been grown. The largest alloyed crystal with mole fraction x≈0.23 has dimensions of 2.97mm x 3.23mm x ∼3mm and recorded average growth rates near 0.2mm/week. Four structures were solved from X-ray diffraction data and their crystallographic data reported here. Rocking curve analysis determined a dislocation density of 1.2×109 cm-2.


2016 ◽  
Vol 81 (2) ◽  
pp. 49-54
Author(s):  
G. Çelik Gül ◽  
F. Kurtuluş

Purpose: of this research, our target is synthesis and characterization of rare earth metalssuch as Y, Gd and La doped barium borophosphate compounds which are applicable innon-linear optics industry.Design/methodology/approach: The starting materials rare earth oxides, bariumcarbonate, boric acid and ammonium dihydrogen phosphate as analytically grade weighed0.01:1:1:1 molar ratio and homogenized in an agate mortar. The mixture placed into aporcelain crucible to heat in high temperature oven step by step. First, mixtures were waitedat 400°C for 2 hours for calcination process, subsequently heated 900°C with step rate10°C/m for 8 hours, and finally cooled down to room temperature with step rate 10°C/m.After many grindings final product get ready for characterization. X-ray powder diffraction(XRD) analysis was performed using PANanalytical X’Pert PRO Diffractometer (XRD) withCu Kα (1.5406 Å, 45 kV and 30 mA) radiation. Fourier transform infrared spectroscopy(FTIR) was taken on a Perkin Elmer Spectrum 100 FTIR Spectrometer from 4000 to 650cm-1. Scanning electron microscopy was achieved in SEM JEOL 6390-LV. Luminescenceproperties were performed by Andor Solis Sr 500i spectrophotometer. Conventional solidstate syntheses were done in Protherm furnace.Findings: The powder XRD patterns of the samples show that there is no impurity related todoping materials mean all diffractions corresponding to host material barium borophosphatecrystallized in hexagonal system with unit cell parameters a=7.1003 and c=6.9705 Å. Theunit cell parameters of rare earth doped barium borophosphates were calculated and displayboth increase and decrease depends on ionic Radius of rare earths. The other supportingmethods confirm the crystal structure and luminescence properties.Research limitations/implications: The synthesis method has some disadvantagessuch as low homogeneity, non-uniform product etc. We tried to minimize these negativeaspects in our research and succeeded.Practical implications: Phosphor materials Y:BaBPO5, Gd:BaBPO5 and La:BaBPO5(ICSD 51171) were synthesized by conventional solid state method and characterizationswas mainly based on powder X-ray diffraction pattern. Also, morphological and luminescenceproperties were completed to get the highest knowledge.Originality/value: Of the paper is first time conventional synthesis of Y, Gd and La dopedBaBPO5 compounds, calculation of unit cell parameters, and investigation of morphologicaland luminescent properties.


2011 ◽  
Vol 492 ◽  
pp. 324-327
Author(s):  
Ya Wei Hu ◽  
Yang Min Ma

Two iron complexes, Fe3(dtdb)2(HCO2)2(DMF)2(H2O)2(1) and Fe(bpy)(Hdtdb)(H2O) (2) were solvothermally synthesized and characterized by single crystal X-ray diffraction. Fe3(dtdb)2(HCO2)2(DMF)2(H2O)2 (1) shows 2D layer structure crystallized in a triclinic with space group P-1 and cell parameters, a = 8.5591(10) nm, b = 11.2502(13) nm, c = 11.4370(14) nm, α = 90.687(2)º, β = 110.275(2)º , γ = 90.712(2)º, and Z = 1. Fe(bpy)(Hdtdb)(H2O) (2) shows surper- molecular architecture crystallized in a triclinic with space group P-1 and cell parameters, a = 8.286(12) nm, b = 11.5937(16) nm, c = 11.8477(17) nm, α = 93.932(3)º, β = 102.442(3)º, γ = 97.117(3)º, and Z = 1.


Sign in / Sign up

Export Citation Format

Share Document