Li vs. Zn substitution in Li17Si4 – Li17–ε–δZnεSi4 connecting the structures of Li21Si5 and Li17Si4

2020 ◽  
Vol 75 (1-2) ◽  
pp. 91-96
Author(s):  
Volodymyr Baran ◽  
Thomas F. Fässler

AbstractBinary lithium silicides play a crucial role in high energy density anode materials for rechargeable batteries. During charging processes of Si anodes Li15Si4 is formed as a metastable phase which has been stabilized through Li by Mg, Zn and Al substitution. Here we investigate Li by Zn substitution in the lithium-richest phase Li17Si4 and report on the particular site preference of Zn atoms since Zn is substituting Li atoms only on one out of 13 possible lithium sites. This site preference shows an interesting relation to the closely related phase Li21Si5 and thus Li17−ε−δZnεSi4 with ε = 0.025(1) and δ = 0.033(1) can be considered as the missing link between the structures of Li21Si5 (= Li4.20Si) and Li17Si4 (= Li4.25Si).

Author(s):  
Chenrui Zhang ◽  
Tingting Liang ◽  
Huilong Dong ◽  
Junjun Li ◽  
Junyu Shen ◽  
...  

Sodium-ion batteries (SIBs) have been considered as promising candidates for large-scale energy storage. However, viable anode materials still suffer from sluggish electrochemical reaction kinetics and huge volume expansion during cycling,...


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Wangwang Xu ◽  
Ying Wang

Abstract The increasing demands for environmentally friendly grid-scale electric energy storage devices with high energy density and low cost have stimulated the rapid development of various energy storage systems, due to the environmental pollution and energy crisis caused by traditional energy storage technologies. As one of the new and most promising alternative energy storage technologies, zinc-ion rechargeable batteries have recently received much attention owing to their high abundance of zinc in natural resources, intrinsic safety, and cost effectiveness, when compared with the popular, but unsafe and expensive lithium-ion batteries. In particular, the use of mild aqueous electrolytes in zinc-ion batteries (ZIBs) demonstrates high potential for portable electronic applications and large-scale energy storage systems. Moreover, the development of superior electrolyte operating at either high temperature or subzero condition is crucial for practical applications of ZIBs in harsh environments, such as aerospace, airplanes, or submarines. However, there are still many existing challenges that need to be resolved. This paper presents a timely review on recent progresses and challenges in various cathode materials and electrolytes (aqueous, organic, and solid-state electrolytes) in ZIBs. Design and synthesis of zinc-based anode materials and separators are also briefly discussed.


2019 ◽  
Vol 9 (14) ◽  
pp. 2787 ◽  
Author(s):  
Chunlian Wang ◽  
Yongchao Yu ◽  
Jiajia Niu ◽  
Yaxuan Liu ◽  
Denzel Bridges ◽  
...  

With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.


2020 ◽  
Vol 44 (5) ◽  
pp. 1865-1871 ◽  
Author(s):  
Tianyun Zhang ◽  
Fujuan Wang ◽  
Liang Yang ◽  
Hongxia Li ◽  
Jiangtao Chen ◽  
...  

Bacterial cellulose-derived cathode and anode with similar carbon microstructure are well match in kinetic for high energy density sodium-ion capacitor.


2020 ◽  
Vol 5 (9) ◽  
pp. 1287-1292
Author(s):  
Jiangyan Wang ◽  
Yi Cui ◽  
Dan Wang

This Focus article clarifies that hollow multishelled structure-based electrode is indispensable to realize practically high energy density of rechargeable batteries.


2019 ◽  
Vol 7 (47) ◽  
pp. 26858-26866 ◽  
Author(s):  
Jing Xu ◽  
Dashuai Wang ◽  
Yanhui Liu ◽  
Ruqian Lian ◽  
Xinying Gao ◽  
...  

A new 2D transition metal nitride tetra-VN2 monolayer with a superior rate capability and a high energy density could be used as a potential alkali ion storage material for high energy rechargeable batteries.


2019 ◽  
Vol 21 (13) ◽  
pp. 7045-7052 ◽  
Author(s):  
Masahiro Shimizu ◽  
Koichi Hirahara ◽  
Susumu Arai

The development of Zn–air batteries with a high energy density of 1350 W h kg−1 is one of the breakthroughs required to achieve a low carbon society.


2019 ◽  
Vol 7 (5) ◽  
pp. 2165-2171 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai

Siligraphenes including g-SiC2 and g-SiC3 can be promising candidates as anode materials for lithium-ion batteries.


2016 ◽  
Vol 879 ◽  
pp. 2150-2152
Author(s):  
Shunsuke Yagi ◽  
Masaaki Fukuda ◽  
Tetsu Ichitsubo ◽  
Eiichiro Matsubara

Rechargeable Mg batteries have received intensive attention as affordable rechargeable batteries with high electromotive force, high energy density, and high safety. Mg possesses two valence electrons and has the lowest standard electrode potential (ca. -2.36 V vs. SHE) among the air-stable metals. There is another advantage that Mg metal can be used as an active material because Mg metal hardly forms dendrites. However, the slow diffusion of Mg ions in solid crystals prevents the realization of active materials for Mg rechargeable batteries at room temperature. Although some complex oxides have been reported to work as active materials at higher temperatures, Chevrel compounds are still the gold standards, which work at room temperature. However, the working voltage of the Mg battery using a Chevrel compound for the cathode is only ca. 1.2 V, which is far below that of Li-ion batteries (3-5 V). Nevertheless, Chevrel compounds have the significant advantage that a relatively large space exists in the crystal structure, which allows for fast Mg ion diffusion. In the present study, we investigated some materials with framework structures as cathodes for Mg batteries, which can alleviate the electrostatic constraint between Mg ions and cathode constituents. Specifically, we investigated the redox behavior of the thin films of Prussian blue and Prussian blue analogues in electrolytes containing an Mg salt using electrochemical quartz crystal microbalance and X-ray absorption spectroscopy. In addition, we discuss the electrochemical insertion/extraction behavior of Mg ions and their solvation structures.


Sign in / Sign up

Export Citation Format

Share Document