Lachnellins A, B, C, D, and Naphthalene-l,3,8-triol, Biologically Active Compounds from a Lachnellula Species (Ascomycetes)

1996 ◽  
Vol 51 (7-8) ◽  
pp. 500-512 ◽  
Author(s):  
Martin Semar ◽  
Heidrun Anke ◽  
Wolf-Rüdiger Arendholz ◽  
Robert Veiten ◽  
Wolfgang Steglich

Abstract In the course of our search for new biologically active metabolites, lachnellin A (1), a metabolite with high cytotoxic and antimicrobial activities, the structurally related lachnellins B, C and D (3, 4, 7), and naphthalene-1,3,8-triol (8), an inhibitor of malate synthase (EC 4.1.3.2), were isolated from submerged cultures of the ascomycete Lachnellula sp. A 32 -8 9 . The antimicrobial, cytotoxic and phytotoxic activities of lachnellin A depended on its reactivity and could be abolished by the addition of cysteine. The enzyme inhibiting activity of (8) was due to reactive intermediates during melanization and was no longer observed in the presence of serum albumin. In addition, rac-scytalone (9), (+)-trans-3,4-dihydro-3,4,8-trihy-droxy-1(2H)-naphthalenone (10). 2,5-dihydroxytoluene (11), and (R)-(-)-5-methylmellein (12) were obtained from the same source and biologically characterized.

2020 ◽  
Vol 17 (7) ◽  
pp. 525-534 ◽  
Author(s):  
Nevin Arıkan Ölmez ◽  
Faryal Waseer

Background: Urea, thiourea, and 1,2,4-oxadiazole compounds are of great interest due to their different activities such as anti-inflammatory, antiviral, analgesic, fungicidal, herbicidal, diuretic, antihelminthic and antitumor along with antimicrobial activities. Objective: In this work, we provide a new series of potential biologically active compounds containing both 1,2,4-oxadiazole and urea/thiouprea moiety. Materials and Methods: Firstly, 5-chloromethyl-3-aryl-1,2,4-oxadiazoles (3a-j) were synthesized from the reaction of different substituted amidoximes (2a-j) and chloroacetyl chloride in the presence of pyridine by conventional and microwave-assisted methods. In the conventional method, 1,2,4-oxadiazoles were obtained in two steps. O-acylamidoximes obtained in the first step at room temperature were heated in toluene for an average of one hour to obtain 1,2,4-oxadiazoles. The yields varied from 70 to 96 %. 1,2,4-oxadiazoles were obtained under microwave irradiation in a single step in a 90-98 % yield at 160 °C in five minutes. 5-aminomethyl-3-aryl-1,2,4- oxadiazoles (5a-j) were obtained by Gabriel amine synthesis in two steps from corresponding 5-chloromethyl-3- aryl-1,2,4-oxadiazoles. Finally, twenty new urea (6a-j) and thiourea (7a-j) compounds bearing oxadiazole ring were synthesized by reacting 5-aminomethyl-3-aryl-1,2,4-oxadiazoles with phenyl isocyanate and isothiocyanate in tetrahydrofuran (THF) at room temperature with average yields (40-70%). Results and Discussions: An efficient and rapid method for the synthesis of 1,2,4-oxadiazoles from the reaction of amidoximes and acyl halides without using any coupling reagent under microwave irradiation has been developed, and twenty new urea/thiourea compounds bearing 1,2,4-oxadiazole ring have been synthesized and characterized. Conclusion: We have synthesized a new series of urea/thiourea derivatives bearing 1,2,4-oxadiazole ring. Also facile synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from amidoximes and acyl chlorides under microwave irradiation was reported. The compounds were characterized using FTIR, 1H NMR, 13C NMR, and elemental analysis techniques.


2018 ◽  
Vol 18 (2) ◽  
pp. 182-194 ◽  
Author(s):  
Aliyu Muhammad ◽  
Mohammed Auwal Ibrahim ◽  
Ochuko Lucky Erukainure ◽  
Ibrahim Malami ◽  
Auwal Adamu

Background: Cancer is a multifaceted metabolic disease that affects sizeable dwellers of rural and urban areas. Among the various types of cancer, mammary cancer is one of the most frequently diagnosed cancers in women. Its menace can be curbed with locally consumed spices due to their multiple bioactive phytochemicals. Aims: This review focuses on the breast cancer chemopreventive and therapeutic potentials of locally consumed spices. Methods/Results: The most commonly consumed spices with breast cancer chemopreventive and chemotherapeutic phytochemical include pepper, onions, ginger, garlic, curry and thyme containing many biologically active metabolites ranging from vitamins, fatty acids esters, polyphenols/phenolics, sulfurcontaining compounds and anthraquinones with proven antioxidant, anti-inflammatory, immuno-modulatory, antitumor and anticancer properties against breast cancer/carcinogenesis. Therefore, extracts and active principles of these spices could be explored in breast cancer chemoprevention and possibly therapeutically which may provide an avenue for reducing the risk and prevalence of breast cancer.


ChemInform ◽  
2009 ◽  
Vol 40 (30) ◽  
Author(s):  
M. P. Sobolevskaya ◽  
V. A. Denisenko ◽  
S. Fotso ◽  
H. Laach ◽  
N. I. Menzorova ◽  
...  

1995 ◽  
Vol 42 (4) ◽  
pp. 735-738 ◽  
Author(s):  
Jingyu Su ◽  
Longmei Zeng ◽  
Yongli Zhong ◽  
Xiong Fu

1995 ◽  
Vol 73 (S1) ◽  
pp. 1265-1274 ◽  
Author(s):  
James B. Gloer

Mechanisms of fungal antagonism and defense often include the production of biologically active metabolites by one species that exert effects on potential competitors and (or) predators. Studies carried out in our laboratory and others clearly indicate that such ecological phenomena can serve as valuable leads to the discovery of novel and potentially useful bioactive fungal metabolites. There is evidence that some of these compounds may render advantages to the producing organism, although careful and definitive ecological studies are required to determine this. Nevertheless, the results summarized here demonstrate the broad array of possible benefits that can arise from interdisciplinary studies in this area. This paper focuses primarily on our own investigations of the chemistry involved in fungal antagonism and defense using coprophilous and sclerotial fungi as model systems. These results have potential implications in many areas of study, including fungal ecology, secondary metabolism, chemotaxonomy, organic chemistry, structure determination, antifungal chemotherapy, and insect control. Key words: fungi, antifungal, insecticide, antagonism, chemical defense, secondary metabolites.


2019 ◽  
Vol 234 ◽  
pp. 197-203 ◽  
Author(s):  
Qinghua Wu ◽  
Jiri Patocka ◽  
Eugenie Nepovimova ◽  
Kamil Kuca

Sign in / Sign up

Export Citation Format

Share Document