Responses of the Lichen Cladonia convoluta to High CO2 Level and Heavy Metal Treatment

1999 ◽  
Vol 54 (9-10) ◽  
pp. 797-801 ◽  
Author(s):  
Zoltán Takács ◽  
Zsolt Csintalan ◽  
Zoltán Tuba

Despite of the downward acclimation of photosynthesis in C. convoluta, increased net photosynthesis and carbon balance can be anticipated in response to elevated atmospheric CO2 level. CO2 exchange measurement seems to be more indicative when detecting heavy metal stress than fluorescence parameters. Among these, the relative fluorescence decrease ratio (RFd690) shows damage first, suggesting that the primary attack site for heavy metal ions is CO2 fixation and reaction centres are harmed last. Long-term elevated CO2 ameliorates partly this damage by improving C-balance to a greater extent in the heavy-metal stressed lichens

2018 ◽  
Vol 101 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Rui Guo ◽  
Wenya Zhang ◽  
Ying Yang ◽  
Jian Ding ◽  
Shiwei Ai ◽  
...  

2021 ◽  
pp. 128428
Author(s):  
Constantin Nechita ◽  
Andreea Maria Iordache ◽  
Karel Lemr ◽  
Tom Levanič ◽  
Tomas Pluhacek

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2049
Author(s):  
Meining Wang ◽  
Pei Tian ◽  
Min Gao ◽  
Miaomiao Li

To more clearly clarify the relationship between the Epichloë endophyte and its host, F. sinensis, the effects of Epichloë endophyte on F. sinensis performance under heavy metal treatment was investigated. The growth performance and physiology variations of F. sinensis with (E+) and without the endophyte (E−) were evaluated after they were subjected to Zn2+ and Cd2+ treatments. The results showed that heavy metal treatments had significant effects on plants, as the performance of plants under Zn2+ and Cd2+ treatments was significantly different with plants under control treatment (p < 0.05). Cd2+ treatments showed a hormesis effect, whereas Zn2+ did not. The endophyte increased host heavy metal stress tolerance by promoting host growth as the E+ plants had significantly higher plant height, tiller number, root length (p < 0.05). The endophyte also promoted ion uptake by the host and induced endogenous hormone production (p < 0.05). These results suggested that the Epichloë endophyte regulated host growth and physiology to improve association tolerance to environmental conditions. This study provides another example that the Epichloë endophyte can increase plant tolerance to metal stress.


Author(s):  
YongChol Ju ◽  
Xu Zhang ◽  
Chol Jong ◽  
TaeHo Yun ◽  
IINam Ri ◽  
...  

Wood vinegar is widely used as a strong antioxidant, bacteria prevention, plant growth agent, an insecticide, and its effectiveness is shown in heavy metal treatment at this time.Wood vinegar liquid contains organic acids and phenols, which are effective in adsorbing heavy metals. Although a lot of studies have been conducted on the adsorption of heavy metals from biochar, the effect of mixing biochar and wood vinegar liquid on plant budding, and soil heavy metal morphology changes few studies have been analyzed. This paper analyzes the effects of Wood vinegar and biochar on the sprouting of pakchoi grown in different threats of cadmium from the nature of Wood vinegar. As a result, it was confirmed that the optimum concentration of the applied fertilizer wood vinegar that lowers the plant effectiveness of Cadmium was 1.0%. The fresh weight of pakchoi changed significantly in the order of biochar + wood vinegar 1.0% mixing> biochar> control. When 5.0% Biochar was mixed with 1.0% wood vinegar, the immobilization effect of the residual state and the carbonate bound cadmium in the soil was the highest. The combined application of wood vinegar and biochar promotes the germination of pakchoi, and has a significant inactivation effect on cadmium-contaminated soil; the results of analyzing the effectiveness of the mixing of wood vinegar and biochar and separate fertilization for each soil index show that, Compared to before sowing the pH ratio of the mixed treatment of biochar + wood vinegar is higher than that of the single treatment zone, which is as high as between 6.6-6.8, the EC is reduced to 2-59mS/cm width, and the CEC is increased by 0.27-2.21 times. It shows that under heavy metal stress, the mixed treatment of biochar+wood vinegar solution 1.0% is more effective than the treatment of biochar alone and the control.


Author(s):  
Blaurock-Busch E

The heavy metal burden of patients with Autism spectrum disorders (ASD) has been widely discussed [1-5]. Present knowledge suggests that ASD patients, compared to ‘normal’s’ show a greater metal burden, which may be a cause of the ASD pathogenesis, possibly due to a limited detoxification potential. We thus aimed to evaluate if the metal burden of ASD children is due to comprised detoxification ability, and if missing of enzymes such as the glutathione-S-transferases provide an explanation, or if additional factors play a role. Genetically, we noticed a slight difference in the detoxification ability of the ASD group compared to the Control group. In the ASD group, carrier of the genotype GSTT1 null genotype (i.e. the homozygous loss) are 1.7 times more common as in the Control group and the GSTT1 allele is more frequent in the ASD patient collective. These findings are not statistically significant but indicate a trend. In addition, our data indicates that levels of potentially toxic metals in blood and hair of both groups demonstrate a similar immediate and long-term exposure. However, 36% of the ASD group showed signs of zinc deficiency compared to 11% of the Control group and this points towards inefficiency of the Phase I detoxification pathway. More research is needed to explore the role of other elements in the detoxification pathway.


1995 ◽  
Vol 30 (2) ◽  
pp. 265-276 ◽  
Author(s):  
Denis Bussières ◽  
Raynald Côté ◽  
Clément Richard ◽  
Édith St-Pierre

Abstract Long-term copper toxicity has been demonstrated in Scenedesmus quadricauda. Upon continuous exposure to copper ions at 250 μg/L, the algae responded by a sharp increase in the synthesis of complexing polypeptides to chelate Cu. Complexing polypeptides gradually decreased, as observed by six sampling tests over 732 h, resembling to a negative exponential curve. This gradual diminution is considered to be a prime mechanism of acclimation or of adaptation to a heavy metal contaminated environment.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Sign in / Sign up

Export Citation Format

Share Document