scholarly journals The Promotion of Festuca sinensis under Heavy Metal Treatment Mediated by Epichloë Endophyte

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2049
Author(s):  
Meining Wang ◽  
Pei Tian ◽  
Min Gao ◽  
Miaomiao Li

To more clearly clarify the relationship between the Epichloë endophyte and its host, F. sinensis, the effects of Epichloë endophyte on F. sinensis performance under heavy metal treatment was investigated. The growth performance and physiology variations of F. sinensis with (E+) and without the endophyte (E−) were evaluated after they were subjected to Zn2+ and Cd2+ treatments. The results showed that heavy metal treatments had significant effects on plants, as the performance of plants under Zn2+ and Cd2+ treatments was significantly different with plants under control treatment (p < 0.05). Cd2+ treatments showed a hormesis effect, whereas Zn2+ did not. The endophyte increased host heavy metal stress tolerance by promoting host growth as the E+ plants had significantly higher plant height, tiller number, root length (p < 0.05). The endophyte also promoted ion uptake by the host and induced endogenous hormone production (p < 0.05). These results suggested that the Epichloë endophyte regulated host growth and physiology to improve association tolerance to environmental conditions. This study provides another example that the Epichloë endophyte can increase plant tolerance to metal stress.

2020 ◽  
Author(s):  
Meining Wang ◽  
Pei Tian ◽  
Min Gao ◽  
Miaomiao Li

Abstract Background: Festuca sinensis is a perennial grass of the genus Festuca, which has strong stress tolerance and high adaptability. F. sinensis normally symbiotic with Epichloë endophyte. In order to evaluate the possibility of F. sinensis-endophyte association as bioremediation grass in heavy metal polluted soils, the effects and mechanism of the F. sinensis-endophyte interaction under heavy metal stress was investigated. Results: The growth performance and physiology variations of F. sinensis with (E+) and without endophyte (E-) were evaluated after they were subjected to Zn2+ and Cd2+ treatments. The results showed that heavy metal treatments had significant effects on plants as the growth indices of plants under Zn2+ and Cd2+ treatments had significant differences compared with plants under control treatment (P<0.05). Zn2+ treatment had positive effects on plants whereas Cd2+ treatment had negative effects. The plants under Cd2+ treatment produced more lolitrem B (P<0.05). Endophyte increased host heavy metal stress tolerance by promoting host growth as the E+ plants had significantly higher plant height, tiller number, root length (P<0.05). Endophyte also promoted host Zn2+ ion absorbing and induced more endogenous hormone production (P<0.05). Conclusions: These results suggested that Epichloë regulated host growth and physiology to improve association tolerance to environmental conditions.


2021 ◽  
Vol 22 (21) ◽  
pp. 11445
Author(s):  
Md. Najmol Hoque ◽  
Md. Tahjib-Ul-Arif ◽  
Afsana Hannan ◽  
Naima Sultana ◽  
Shirin Akhter ◽  
...  

Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.


2020 ◽  
Vol 21 (6) ◽  
pp. 2209 ◽  
Author(s):  
Yuanyuan Wan ◽  
Zhen Wang ◽  
Jichun Xia ◽  
Shulin Shen ◽  
Mingwei Guan ◽  
...  

Phosphorus transporter (PHT) genes encode H2PO4−/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1–PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.


Author(s):  
Muhammad Shahid ◽  
Natasha ◽  
Sana Khalid ◽  
Ghulam Abbas ◽  
Nabeel Khan Niazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document