Genomic Relations among 31 Species of Mammillaria Haworth (Cactaceae) Using Random Amplified Polymorphic DNA

2006 ◽  
Vol 61 (7-8) ◽  
pp. 583-591 ◽  
Author(s):  
Ilwola Mattagajasingh ◽  
Arup Kumar Mukherjee ◽  
Premananda Das

Thirty-one species of Mammillaria were selected to study the molecular phylogeny using random amplified polymorphic DNA (RAPD) markers. High amount of mucilage (gelling polysaccharides) present in Mammillaria was a major obstacle in isolating good quality genomic DNA. The CTAB (cetyl trimethyl ammonium bromide) method was modified to obtain good quality genomic DNA. Twenty-two random decamer primers resulted in 621 bands, all of which were polymorphic. The similarity matrix value varied from 0.109 to 0.622 indicating wide variability among the studied species. The dendrogram obtained from the unweighted pair group method using arithmetic averages (UPGMA) analysis revealed that some of the species did not follow the conventional classification. The present work shows the usefulness of RAPD markers for genetic characterization to establish phylogenetic relations among Mammillaria species.

2012 ◽  
Vol 22 (1) ◽  
pp. 51-58 ◽  
Author(s):  
M.E. Hoque ◽  
M.M. Hasan

Random Amplified Polymorphic DNA (RAPD) markers were used to study the molecular genetic diversity analysis among six BARI released lentil varieties viz. BARI masur-1, BARI masur-2, BARI masur-3, BARI masur-4, BARI masur-5 and BARI masur-6. PCR amplified products were visualized on 1.0% agarose gel and the band for each primer were scored. Ten RAPD markers were used in this study. Out of them 7 primers showed amplification of 53 DNA fragments with 60.37% of them being polymorphic. The highest number of polymorphic loci was noticed in the variety BARI masur-3. The same variety also showed maximum Nei’s gene diversity value (0.0552). The highest Nei’s genetic distance (0.5002) was observed in BARI masur-1 vs. BARI masur-5 whereas, the lowest genetic distance (0.0692) was found in BARI masur-1 vs. BARI masur-2. The unweighted pair group method of arithmetic mean (UPGMA) dendrogram based on Nei’s genetic distance grouped the six cultivars into two main clusters. BARI masur-1, BARI masur-2 and BARI masur-3 were in cluster I and BARI masur-4, BARI masur-5 and BARI masur-6 were in cluster II. The cultivar BARI masur-4 was closest to the cultivar BARI masur-6 with the lowest genetic distance (0.0972) and the highest genetic distance (0.5002) was found between BARI masur-1 and BARI masur-5. The RAPD markers were found to be useful in molecular characterization of lentil varieties which could be utilized by the breeders for the improvement of lentil cultivars. DOI: http://dx.doi.org/10.3329/ptcb.v22i1.11260 Plant Tissue Cult. & Biotech. 22(1): 51-58, 2012 (June)


2000 ◽  
Vol 78 (5) ◽  
pp. 655-659 ◽  
Author(s):  
Tom Hsiang ◽  
Junbin Huang

Two species of Chamaecyparis and six cultivars each of Juniperus chinensis L. and Juniperus scopulorum Sarg. (Cupressaceae) were subjected to random amplified polymorphic DNA (RAPD) analysis using seven primers. Unweighted pair group method with averages (UPGMA) and principal component analyses of genetic distances between cultivars showed that 42 polymorphic RAPD bands could distinguish among all cultivars and properly group them by species and genera. Where the origin of a specific juniper cultivar is uncertain, analysis of genetic distance can pinpoint close relatives. For example, we were unable to trace the origin of J. chinensis 'Alps', and we initially thought it was a mislabeled J. chinensis 'Blue Alps'. However, we found 'Alps' to be closer to J. chinensis 'Fairview' and 'Mountbatten' than to 'Blue Alps'. Similarly, 'Wichita Blue' has an unknown origin, but it had the highest genetic similarity with 'Medora'.Key words: juniper, cedar, RAPD, cultivars, phylogenetics.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 613-619 ◽  
Author(s):  
Ghazal Baziar ◽  
Moslem Jafari ◽  
Mansoureh Sadat Sharifi Noori ◽  
Samira Samarfard

Ficus carica L. is one of the most ancient fruit trees cultivated in Persia (Iran). The conservation and characterization of fig genetic resources is essential for sustainable fig production and food security. Given these considerations, this study characterizes the genetic variability of 21 edible F. carica cultivars in the Fars Province using random amplified polymorphic DNA (RAPD) markers. The collected cultivars were also characterized for their morphological features. A total of 16 RAPD primers produced 229 reproducible bands, of which, 170 loci (74.43%) were polymorphic with an average polymorphic information content (PIC) value of 0.899. Genetic analysis using an unweighted pair-group method with arithmetic averaging (UPGMA) revealed genetic structure and relationships among the local germplasms. The dendrogram resulting from UPGMA hierarchical cluster analysis separated the fig cultivars into five groups. These results demonstrate that analysis of molecular variance allows for the partitioning of genetic variation between fig groups and illustrates greater variation within fig groups and subgroups. RAPD-based classification often corresponded with the morphological similarities and differences of the collected fig cultivars. This study suggests that RAPD markers are suitable for analysis of diversity and cultivars’ fingerprinting. Accordingly, understanding of the genetic diversity and population structure of F. carica in Iran may provide insight into the conservation and management of this species.


2016 ◽  
Vol 25 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Kuasha Mahmud ◽  
KM Nasiruddin ◽  
MA Hossain ◽  
L Hassan

Sugarcane somaclones and their sources varieties were analyzed by RAPD molecular markers to check the variation at molecular level based on 1.4% agarose gel electrophoresis (AGE). Six RAPD primers generated 237 bands with average 39.5 varied from 15 to 63 with size ranging 145 - 1000 bp among the four sugarcane varieties and their 12 somaclones. Genetic diversity or polymorphism information content (PIC) value ranged from 0.39 to 0.50 for all loci across the 4 varieties and their 12 somaclones based on RAPD markers. Dendrogram based on linkage distance using unweighted pair group method of arithmetic means (UPGMA) based on 6 RAPD primers indicated segregation of the 4 sugarcane varieties and their somaclones into two main clusters at linkage distance 36. Variety Isd 39 was observed in main cluster C1 while its (Isd 39) somaclones and other varieties (Isd 37, Isd 38 and Isd 40) and also their somaclones were found in main cluster C2 having different sub-clusters. Theirfore, it may be concluded that RAPD markers can be used for identification of somaclonal variation and the relationship between sources varieties and their somaclones.Plant Tissue Cult. & Biotech. 25(2): 223-229, 2015 (December)


1970 ◽  
Vol 34 (3) ◽  
pp. 493-503 ◽  
Author(s):  
KK Ghosh ◽  
ME Haque ◽  
S Parvin ◽  
F Akhter ◽  
MM Rahim

This investigation was aimed at exploring the genetic diversity and relationship among nine Brassica varieties, namely BARI Sharisha-12, Agrani, Sampad, BINA Sharisha-4, BINA Sharisha-5, BARI Sharisha-13, Daulot, Rai-5, Alboglabra using Random Amplified Polymorphic DNA (RAPD) markers. In total, 59 reproducible DNA bands were generated by four arbitrary selected primers of which 58 (98.03%) bands were proved to be polymorphic. These bands ranged from 212 to 30686 bp in size. The highest proportion of polymorphic loci and gene diversity values were 37.29% and 0.1373, respectively, for BARI Sharisha-12 and the lowest proportion of polymorphic loci and gene diversity values were 8.47% and 0.0318, 8.47% and 0.0382 for BINA Sharisha-4 and Rai-5, respectively. A dendrogram was constructed using unweighted pair group method of arithmetic mean (UPGMA). The result of cluster analysis indicated that the 9 accessions were capable of being classified into 2 major groups. One group consists of BARI Sharisha-12, Agrani, Sampad, Daulot, Rai-5, Alboglabra. where Daulot and Rai-5 showed the lowest genetic distance of 0.049. And another group contains BINA Sharisha-4, BINA Sharisha-5, and BARI Sharisha-1 3, where BINA Sharisha-5 and BARI sharisha-13 showed genetic distance of 0.071. Key Words: RAPD, Brassica, genetic distance, polymorphic band. DOI: 10.3329/bjar.v34i3.3976 Bangladesh J. Agril. Res. 34(3) : 493-5032, September 2009


1970 ◽  
Vol 35 (2) ◽  
pp. 313-322 ◽  
Author(s):  
M Maniruzzaman ◽  
ME Haque ◽  
MM Haque ◽  
MA Sayem ◽  
M Al-Amin

A polymerase chain reaction (PCR) based approach, namely random amplified polymorphic DNA (RAPD) analysis was applied to l0 varieties of onion (Allium cepa) in order to assess the degree of polymorphism within the genes and to investigate if this approach was suitable for genetic studies of onion. For this study, ten cultivars of onion were evaluated for variability using a set of 15 random l0-mer primers. The polymorphisms in PCR amplification products were subjected to the unweighed pair group method for arithmetic averages (UPGMA) and plotted in a phenogram. The dendogram constructed from the similarity data showed that all the cultivars analyzed were related. Among them, 12 of the primers revealed scorable (168 bands) polymorphisms between cultivars of A. cepa and the rest did not show polymorphism in their genetic level. In this study, it was found that Bermis and India-2 were more dissimilar and on the other hand, Faridpuri and Bhati were the most similar in their genetic level. Keywords: RAPD; onion; genetic diversity; polymorphism. DOI: 10.3329/bjar.v35i2.5894Bangladesh J. Agril. Res. 35(2) : 313-322, June 2010


Weed Science ◽  
1998 ◽  
Vol 46 (3) ◽  
pp. 318-321 ◽  
Author(s):  
Paloma Abad ◽  
Bernardo Pascual ◽  
José V. Maroto ◽  
Salvador López-Galarza ◽  
María J. Vicente ◽  
...  

Cultivated and weedy clones of yellow nutsedge were analyzed using random amplified polymorphic DNA (RAPD) markers to assess the polymorphism within the species and determine if this approach was suitable for identification of cultivar and wild populations. The RAPD markers unambiguously identified all studied clones. Nei-Li similarities were computed and used in an unweighted pair group method using arithmetic average (UPGMA) cluster analyses. Cultivated and weedy clones were clustered in two groups, but two cultivated clones were more closely related to weedy clones than to cultivated clones. The results showed a high level of genetic variability among the clones tested, particularly among the cultivated ones. Identification of yellow nutsedge cultivars and analysis of genetic diversity within and among weedy populations is possible by using only a small number of primers. In this study, seven selected primers discriminated among the 10 tested clones.


2009 ◽  
Vol 52 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Athanasios L. Tsivelikas ◽  
Olga Koutita ◽  
Anastasia Anastasiadou ◽  
George N. Skaracis ◽  
Ekaterini Traka-Mavrona ◽  
...  

In this work, the part of the squash core collection, maintained in the Greek Gene Bank, was assessed using the morphological and molecular data. Sixteen incompletely classified accessions of the squash were characterized along with an evaluation of their resistance against two isolates of Fusarium oxysporum. A molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers was also performed, revealing high level of polymorphism. To study the genetic diversity among the squash accessions, a clustering procedure using Unweighed Pair Group Method and Arithmetic Average (UPGMA) algorithm was also adopted. Two independent dendrograms, one for the morphophysiological and one for molecular data were obtained, classifying the accessions into two and three main clusters, respectively. Despite the different number of the clusters there were many similarities between these two dendrograms, and a third dendrogram resulting from their combination was also produced, based on Gower's distance and UPGMA clustering algorithm. In order to determine the optimal number of clusters, the upper tail approach was applied. The more reliable clustering of the accessions was accomplished using RAPD markers as well as the combination of the two different data sets, classifying the accessions into three significantly different groups. These groups corresponded to the three different cultivated species of C. maxima Duch., C. moschata Duch., and C. pepo L. The same results were also obtained using Principal Component Analysis.


2019 ◽  
Vol 6 (2) ◽  
pp. 215-225
Author(s):  
Nazmul Islam Mazumder ◽  
Tania Sultana ◽  
Prtitish Chandra Paul ◽  
Dinesh Chandra Roy ◽  
Deboprio Roy Sushmoy ◽  
...  

Twenty six rice lines of PBRC (salt tolerant line-20) × BRRI dhan-29 were used to evaluate salinity tolerance at the seedling stage and tested for salt tolerance using RAPD markers. Salinity screening was done using hydrophonic system at the greenhouse following IRRI standard protocol. Among the studied line, ten were moderately salinity tolerant, nine susceptible and rest of the lines highly susceptible. For assessing genetic diversity and relationship of F3 rice lines including two parents were tested against PCR-based Random Amplified Polymorphic DNA (RAPD) technique using three arbitrary decamer primers; OPA02, OPC01, and OPC12. Selected three primers generated a total of 14 bands. Out of 14 bands, 12 bands (86.67%) were polymorphic and 2 bands (13.33%) were monomorphic. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei’s (1972) genetic distance produced 2 main clusters of the 28 rice genotypes. Most of the moderately tolerant lines and PBRC (STL-20) (tolerant variety) were grouped in same cluster due to lower genetic distance, while maximum susceptible along with BRRI dhan29 (susceptible variety) showed higher genetic distance with PBRC (STL-20) and moderately tolerant lines. This result indicates that the lines which formed grouped together, they are less diversed. On the other hand the lines remain in different clusters or different groups, are much diversed. Thus RAPD perform a potentially simple, rapid and reliable method to evaluate genetic diversity and molecular characterization as well. Res. Agric., Livest. Fish.6(2): 215-225, August 2019


1995 ◽  
Vol 120 (3) ◽  
pp. 548-555 ◽  
Author(s):  
Jianping Ren ◽  
James R. McFerson ◽  
Rugang Li ◽  
Stephen Kresovich ◽  
Warren F. Lamboy

Fifty-two germplasm accessions of Chinese vegetable brassicas were analyzed using 112 random amplified polymorphic DNA (RAPD) markers. The array of material examined spanned a wide range of morphological, geographic, and genetic diversity, and included 30 accessions of Brassica rapa L. (Chinese cabbage, pakchoi, turnip, and broccoletto), 18 accessions of B. juncea (L.) Czern. (leaf, stem, and root mustards), and four accessions of B. oleracea L. ssp. alboglabra (Chinese kale). The RAPD markers unambiguously identified all 52 accessions. Nei-Li similarities were computed and used in unweighed pair group method using arithmetic means (UPGMA) cluster analyses. Accessions and subspecies were clustered into groups corresponding to the three species, but some accessions of some subspecies were most closely related to accessions belonging to other subspecies. Values for Nei-Li similarities suggest that Chinese cabbage is more likely to have been produced by hybridization of turnip and pakchoi than as a selection from either turnip or pakchoi alone. RAPD markers are a fast, efficient method for diversity assessment in Chinese vegetable brassicas that complements techniques currently in use in genetic resources collections.


Sign in / Sign up

Export Citation Format

Share Document