scholarly journals Changes in Liver Gene Expression of Azin1 Knock-out Mice

2010 ◽  
Vol 65 (7-8) ◽  
pp. 519-527 ◽  
Author(s):  
Tao Wan ◽  
Yuan Hu ◽  
Ailong Huang ◽  
Ken-ichi Yamamura ◽  
Hua Tang

The ornithine decarboxylase antizyme inhibitor (AZI) was discovered as a protein that binds to the regulatory protein antizyme and inhibits the ability of antizyme to interact with the enzyme ornithine decarboxylase (ODC). Several studies showed that the AZI protein is important for cell growth in vitro. However, the function of this gene in vivo remained unclear. In our study, we analyzed the transcriptional profiles of livers on the 19th day of pregnancy of Azin1 knock-out mice and wild-type mice using the Agilent oligonucleotide array. Compared to the wild-type mice, in the liver of Azin1 knock-out mice 1812 upregulated genes (fold change ≥ 2) and 1466 downregulated genes (fold change ≤ 0.5) were showed in the microarray data. Altered genes were then assigned to functional categories and mapped to signaling pathways. These genes have functions such as regulation of the metabolism, transcription and translation, polyamine biosynthesis, embryonic morphogenesis, regulation of cell cycle and proliferation signal transduction cascades, immune response and apoptosis. Real-time PCR was used to confirm the differential expression of some selected genes. Overall, our study provides novel understanding of the biological functions of AZI in vivo.

Blood ◽  
2021 ◽  
Author(s):  
Larisa Vladimirovna Kovtonyuk ◽  
Francisco Caiado ◽  
Santiago Garcia-Martin ◽  
Eva-Maria Manz ◽  
Patrick Michael Helbling ◽  
...  

Ageing is associated with impaired hematopoietic and immune function. This is caused in part by decreased hematopoietic stem cell (HSC) population fitness and an increased myeloid differentiation bias. The reasons for this aging-associated HSC impairment are incompletely understood. We here demonstrate that aged specific pathogen free (SPF) wild-type mice in contrast to young SPF mice produce more IL-1a/b in steady-state bone marrow (BM), with most of IL-1a/b being derived from myeloid BM cells. Further, blood of steady-state aged SPF wild-type mice contains higher levels of microbe associated molecular patterns (MAMPs), specifically TLR4 and TLR8 ligands. Also, BM myeloid cells from aged mice produce more IL-1b in vitro, and aged mice show higher and more durable IL-1a/b responses upon LPS stimulation in vivo. To test if HSC ageing is driven via IL-1a/b, we evaluated HSCs from IL-1 receptor 1 (IL-1R1) knock-out mice. Indeed, aged HSCs from IL-1R1 knock-out mice show significantly mitigated ageing-associated inflammatory signatures. Moreover, HSCs from aged IL-1R1KO and also from germ-free mice maintain unbiased lympho-myeloid hematopoietic differentiation upon transplantation, thus resembling this functionality of young HSCs. Importantly, in vivo antibiotic suppression of microbiota or pharmacologic blockade of IL-1 signaling in aged wild-type mice was similarly sufficient to reverse myeloid biased output of their HSC populations. Collectively, our data defines the microbiome-IL-1/IL-1R1 axis as a key, self-sustaining, but also therapeutically partially reversible driver of HSC inflamm-ageing.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 3997-4002 ◽  
Author(s):  
Dirk Meyer ◽  
Carsten Schiller ◽  
Jürgen Westermann ◽  
Shozo Izui ◽  
Wouter L. W. Hazenbos ◽  
...  

Abstract In autoimmune hemolytic anemia (AIHA), there is accumulating evidence for an involvement of FcγR expressed by phagocytic effector cells, but demonstration of a causal relationship between individual FcγRs and IgG isotypes for disease development is lacking. Although the relevance of IgG isotypes to human AIHA is limited, we could show a clear IgG isotype dependency in murine AIHA using pathogenic IgG1 (105-2H) and IgG2a (34-3C) autoreactive anti–red blood cell antibodies in mice defective for FcγRIII, and comparing the clinical outcome to those in wild-type mice. FcγRIII-deficient mice were completely resistent to the pathogenic effects of 105-2H monoclonal antibody, as shown by a lack of IgG1-mediated erythrophagocytosis in vitro and in vivo. In addition, the IgG2a response by 34-3C induced a less severe but persistent AIHA in FcγRIII knock-out mice, as documented by a decrease in hematocrit. Blocking studies indicated that the residual anemic phenotype induced by 34-3C in the absence of FcγRIII reflects an activation of FcγRI that is normally coexpressed with FcγRIII on macrophages. Together these results show that the pathogenesis of AIHA through IgG1-dependent erythrophagocytosis is exclusively mediated by FcγRIII and further suggest that FcγRI, in addition to FcγRIII, contributes to this autoimmune disease when other IgG isotypes such as IgG2a are involved.


1977 ◽  
Vol 166 (1) ◽  
pp. 81-88 ◽  
Author(s):  
A E Pegg

1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1′-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.


Author(s):  
Angela Longo ◽  
Pasquale Russo ◽  
Vittorio Capozzi ◽  
Giuseppe Spano ◽  
Daniela Fiocco

Abstract Objective We investigated whether the knock out of small heat shock protein (sHSP) genes (hsp1, hsp2 and hsp3) impact on probiotic features of Lactiplantibacillus plantarum WCFS1, aiming to find specific microbial effectors involved in microbe-host interplay. Results The probiotic properties of L. plantarum WCFS1 wild type, hsp1, hsp2 and hsp3 mutant clones were evaluated and compared through in vitro trials. Oro-gastro-intestinal assays pointed to significantly lower survival for hsp1 and hsp2 mutants under stomach-like conditions, and for hsp3 mutant under intestinal stress. Adhesion to human enterocyte-like cells was similar for all clones, though the hsp2 mutant exhibited higher adhesiveness. L. plantarum cells attenuated the transcriptional induction of pro-inflammatory cytokines on lipopolysaccharide-treated human macrophages, with some exception for the hsp1 mutant. Intriguingly, this clone also induced a higher IL10/IL12 ratio, which is assumed to indicate the anti-inflammatory potential of probiotics. Conclusions sHSP genes deletion determined some differences in gut stress resistance, cellular adhesion and immuno-modulation, also implying effects on in vivo interaction with the host. HSP1 might contribute to immunomodulatory mechanisms, though additional experiments are necessary to test this feature.


Blood ◽  
1983 ◽  
Vol 61 (4) ◽  
pp. 740-745 ◽  
Author(s):  
E Niskanen ◽  
A Kallio ◽  
PP McCann ◽  
DG Baker

Abstract Under the influence of a selective irreversible inhibitor of ornithine decarboxylase (ODC), DL-alpha-difluoromethylornithine (DFMO), early hematopoiesis was enhanced. In the bone marrow, the absolute number of cells that give rise to spleen colonies in lethally irradiated mice (CFU-S), granulocytic colonies in diffusion chambers in mice (CFU-DG), and granulocyte-monocyte colonies in agar in vitro (CFU-C) was increased 2–4 fold. This could be abrogated by administration of putrescine, confirming the association of the stimulatory effect with polyamine biosynthesis most likely via depression of ornithine decarboxylase activity and subsequent synthesis of putrescine. Analysis of cell cycle characteristics by 3H-TdR suicide technique demonstrated that the proportion of CFU-S, CFU-DG, and CFU-C in S-phase was significantly increased. Additionally, the stimulatory effect was reflected by enhanced colony formation in diffusion chambers implanted intraperitoneally in mice receiving DFMO. This could also be eliminated by treatment of the host animal with putrescine, again suggesting that polyamine biosynthesis plays an important role at the early stages of hematopoiesis in vivo. Effect of DFMO on colony formation in vitro (CFU- C) was inhibitory and not reversible with putrescine. It could be partially eliminated by aminoguanidine, which neutralizes diamine oxidase present in fetal calf serum used in the CFU-C assay. These data suggest that the effect of DFMO in vitro was nonspecific.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3147-3147 ◽  
Author(s):  
Peter L. Turecek ◽  
Jürgen Siekmann ◽  
Herbert Gritsch ◽  
Katalin Váradi ◽  
Rafi-Uddin Ahmad ◽  
...  

Abstract Chemical modification of recombinant therapeutic proteins with PEG has been shown to enhance the biological half-life. Here we assess the effect of PEGylation on FVIII. Full-length rFVIII bulk drug substance from protein-free fermentation (Advate process, Baxter) was conditioned into a buffer suitable for coupling to polyethylene glycol succinimidyl succinate (linear PEG, 5 kDa PEG chain length). PEG was covalently bound by amine coupling preferentially to lysine residues of FVIII at neutral pH. PEG was removed by ion-exchange chromatography and the PEG-FVIII derivative was concentrated by ultra-diafiltration. The conjugates thus obtained retained about 30–40% of the activity of non-modified rFVIII. The specific activity decreased with the amount of PEG linked to the FVIII molecule. In SDS-PAGE and immunoblot studies PEGylated rFVIII showed a band pattern similar to unmodified FVIII with full-length, heavy chain fragments of 180 kDa and 120 kDa and the light chain fragment of 80 kDa. PEGylation also occurred to a high extent in the B domain of FVIII. All bands appeared broadened due to the attachment of polymeric PEG. The maintenance of functionality of FVIII was demonstrated by its potential to be activated and inactivated by thrombin. In the assay PEGylated and unmodified FVIII were incubated with 1 nM thrombin. Sub-samples were drawn at intervals up to 40 minutes and added to a mixture of FIXa, FX, phospholipid vesicles and Ca2+ containing a thrombin inhibitor. After 3 minutes incubation at 37°C the amount of activated FX (FXa) was measured using a FXa-specific chromogenic substrate. Unmodified rFVIII showed a typical picture of an immediate increase in FXa activity and a subsequent decline with no further FXa generation after 15 minutes. PEGylated rFVIII was activated to the same extent as unmodified FVIII but the decay in FXa generation was slower and did not reach the zero level, even 40 minutes after incubation. The formation of the typical thrombin cleavage fragments, with unmodified as well as PEGylated rFVIII, was demonstrated in a Western blot analysis. The slower inactivation by thrombin was also seen there. The pharmacokinetic properties of PEGylated rFVIII compared with rFVIII were investigated in hemophilia A knock-out mice. Both preparations were applied at a dose of 200 IU rFVIII/kg and groups of mice (n=5) were exsanguinated at several time points up to 24 hours. Terminal half-life for PEGylated rFVIII was calculated at 4.9 hours compared with 1.9 hours for unmodified rFVIII in hemophilia A knock-out mice. AUC was approximately doubled. These results indicate that rFVIII can be biochemically modified with PEG whilst at least partly retaining its major functions, but at the same time prolonging its survival in the circulation of hemophilic mice.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 3997-4002 ◽  
Author(s):  
Dirk Meyer ◽  
Carsten Schiller ◽  
Jürgen Westermann ◽  
Shozo Izui ◽  
Wouter L. W. Hazenbos ◽  
...  

In autoimmune hemolytic anemia (AIHA), there is accumulating evidence for an involvement of FcγR expressed by phagocytic effector cells, but demonstration of a causal relationship between individual FcγRs and IgG isotypes for disease development is lacking. Although the relevance of IgG isotypes to human AIHA is limited, we could show a clear IgG isotype dependency in murine AIHA using pathogenic IgG1 (105-2H) and IgG2a (34-3C) autoreactive anti–red blood cell antibodies in mice defective for FcγRIII, and comparing the clinical outcome to those in wild-type mice. FcγRIII-deficient mice were completely resistent to the pathogenic effects of 105-2H monoclonal antibody, as shown by a lack of IgG1-mediated erythrophagocytosis in vitro and in vivo. In addition, the IgG2a response by 34-3C induced a less severe but persistent AIHA in FcγRIII knock-out mice, as documented by a decrease in hematocrit. Blocking studies indicated that the residual anemic phenotype induced by 34-3C in the absence of FcγRIII reflects an activation of FcγRI that is normally coexpressed with FcγRIII on macrophages. Together these results show that the pathogenesis of AIHA through IgG1-dependent erythrophagocytosis is exclusively mediated by FcγRIII and further suggest that FcγRI, in addition to FcγRIII, contributes to this autoimmune disease when other IgG isotypes such as IgG2a are involved.


2021 ◽  
Author(s):  
James P Bridges ◽  
Caterina Safina ◽  
Bernard Picard ◽  
Kari Brown ◽  
Alyssa Filuta ◽  
...  

The mechanistic details of the tethered agonist mode of activation for adhesion GPCRs has not been completely deciphered. We set out to investigate the physiologic importance of autocatalytic cleavage upstream of the agonistic peptide sequence, an event necessary for NTF displacement and subsequent receptor activation. To examine this hypothesis, we characterized tethered agonist-mediated activation of GPR116 in vitro and in vivo. A knock-in mouse expressing a non-cleavable GPR116 mutant phenocopies the pulmonary phenotype of GPR116 knock-out mice, demonstrating that tethered agonist-mediated receptor activation is indispensable for function in vivo. Using site-directed mutagenesis and species swapping approaches we identified key conserved amino acids for GPR116 activation in the tethered agonist sequence and in extracellular loops 2/3 (ECL2/3). We further highlight residues in transmembrane7 (TM7) that mediate stronger signaling in mouse versus human GPR116 and recapitulate these findings in a model supporting tethered agonist:ECL2 interactions for GPR116 activation.


1992 ◽  
Vol 12 (5) ◽  
pp. 2178-2185 ◽  
Author(s):  
L Ghoda ◽  
D Sidney ◽  
M Macrae ◽  
P Coffino

Mammalian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is rapidly degraded in cells, an attribute important to the regulation of its activity. Mutant and chimeric ODCs were created to determine the structural requirements for two modes of proteolysis. Constitutive degradation requires the carboxy terminus and is independent of intracellular polyamines. Truncation of five or more carboxy-terminal amino acids prevents this mode of degradation, as do several internal deletions within the 37 carboxy-most amino acids that spare the last five residues. Polyamine-dependent degradation of ODC requires a distinct region outside the carboxy terminus. The ODC of a parasite, Trypanosoma brucei, is structurally very similar to mouse ODC but lacks the carboxy-terminal domain; it is not a substrate for either pathway. The regulatory properties of enzymatically active chimeric proteins incorporating regions of the two ODCs support the conclusion that distinct domains of mouse ODC confer constitutive degradation and polyamine-mediated regulation. Mouse ODC contains two PEST regions. The first was not required for either form of degradation; major deletions within the second ablated constitutive degradation. When mouse and T. brucei ODC RNAs were translated in vitro in a reticulocyte lysate system, the effects of polyamine concentration on ODC protein production and activity were similar for the two mRNAs, which contradicts claims that this system accurately reflects the in vivo effects of polyamines on responsive ODCs.


2011 ◽  
Vol 301 (1) ◽  
pp. E172-E179 ◽  
Author(s):  
Nicole K. L. Lee ◽  
Jarrod P. J. Skinner ◽  
Jeffrey D. Zajac ◽  
Helen E. MacLean

The aim of this study is to determine if the Odc1 gene, which encodes ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, is directly regulated by the androgen receptor (AR) in skeletal muscle myoblasts and if Odc1 regulates myoblast proliferation and differentiation. We previously showed that expression of Odc1 is decreased in muscle from AR knockout male mice. In this study, we show in vivo that Odc1 expression is also decreased >60% in muscle from male muscle-specific AR knockout mice. In normal muscle homeostasis, Odc1 expression is regulated by age and sex, reflecting testosterone levels, as muscle of adult male mice expresses high levels of Odc1 compared with age-matched females and younger males. In vitro, expression of Odc1 is 10- and 1.5-fold higher in proliferating mouse C2C12 and human skeletal muscle myoblasts, respectively, than in differentiated myotubes. Dihydrotestosterone increases Odc1 levels 2.7- and 1.6-fold in skeletal muscle cell myoblasts after 12 and 24 h of treatment, respectively. Inhibition of ODC activity in C2C12 myoblasts by α-difluoromethylornithine decreases myoblast number by 40% and 66% following 48 and 72 h of treatment, respectively. In contrast, overexpression of Odc1 in C2C12 myoblasts results in a 27% increase in cell number vs. control when cells are grown under differentiation conditions for 96 h. This prolonged proliferation is associated with delayed differentiation, with reduced expression of the differentiation markers myogenin and Myf6 in Odc1-overexpressing cells. In conclusion, androgens act via the AR to upregulate Odc1 in skeletal muscle myoblasts, and Odc1 promotes myoblast proliferation and delays differentiation.


Sign in / Sign up

Export Citation Format

Share Document