Transport Properties of Polyelectrolyte Solutions. Effect of Confinement in Thin Liquid Films

2015 ◽  
Vol 229 (7-8) ◽  
Author(s):  
Jérôme Delacotte ◽  
Dominique Langevin

AbstractThe role of condensed counterions in transport properties, such as electrical conductivity and viscosity, has been investigated with solutions of a flexible polyelectrolyte. Comparisons with existing theories are proposed. Viscosity is strongly affected by confinement in thin films, depending whether polyelectrolyte chains are adsorbed or not at the film surfaces. The role of counterion mobility is however difficult to assess because the measurements are not accurate enough. It is proposed that this role could be tested by electrical conductivity measurements.

1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


Author(s):  
Amgad R. Rezk ◽  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

Arising from an interplay between capillary, acoustic and intermolecular forces, surface acoustic waves (SAWs) are observed to drive a unique and curious double flow reversal in the spreading of thin films. With a thickness at or less than the submicrometre viscous penetration depth, the film is seen to advance along the SAW propagation direction, and self-similarly over time t 1/4 in the inertial limit. At intermediate film thicknesses, beyond one-fourth the sound wavelength λ ℓ in the liquid, the spreading direction reverses, and the film propagates against the direction of the SAW propagation. The film reverses yet again, once its depth is further increased beyond one SAW wavelength. An unstable thickness region, between λ ℓ /8 and λ ℓ /4, exists from which regions of the film either rapidly grow in thickness to exceed λ ℓ /4 and move against the SAW propagation, consistent with the intermediate thickness films, whereas other regions decrease in thickness below λ ℓ /8 to conserve mass and move along the SAW propagation direction, consistent with the thin submicrometre films.


2010 ◽  
Vol 647 ◽  
pp. 265-285 ◽  
Author(s):  
A. McINTYRE ◽  
L. N. BRUSH

Spin-coating is a process used to fabricate thin films for device applications. In this paper, lubrication theory is used to derive an axisymmetric model for the spin-coating of two immiscible vertically stratified Newtonian thin films. The model includes gravitational, van der Waals, capillary and viscous forces, differences in liquid layer properties and evaporation/condensation effects. Thinning calculations focus on the effects of viscosity and condensation/evaporation. In this case, for layers of uniform thickness, the lower layer thins monotonically yet never reaches zero thickness. With evaporation mass loss the upper layer disappears in finite time, whereas with condensation effects the upper layer approaches a steady-state thickness. Fully nonlinear calculations are carried out for films with non-uniform thickness and the deviation of the interfaces from the flat state is monitored. In general, disturbances to the lower layer have a greater effect on the upper layer than those of disturbances of the upper layer on the lower layer. Disturbances along the upper gas–liquid free surface propagate outward more rapidly than those along the lower liquid–liquid interface and disturbances that decrease the film thickness tend to dissipate more slowly.


Author(s):  
Hua Li ◽  
Gang Li

In this work, we model the strain effects on the electrical transport properties of Si/Ge nanocomposite thin films. We utilize a two-band k·p theory to calculate the variation of the electronic band structure as a function of externally applied strains. By using the modified electronic band structure, electrical conductivity of the Si/Ge nanocomposites is calculated through a self-consistent electron transport analysis, where a nonequilibrium Green’s function (NEGF) is coupled with the Poisson equation. The results show that both the tensile uniaxial and biaxial strains increase the electrical conductivity of Si/Ge nanocomposite. The effects are more evident in the biaxial strain cases.


1998 ◽  
Vol 72 (8) ◽  
pp. 981-983 ◽  
Author(s):  
Y. G. Zhao ◽  
Z. W. Dong ◽  
M. Rajeswari ◽  
R. P. Sharma ◽  
T. Venkatesan

2015 ◽  
Author(s):  
Tanveer Ahmad Dar ◽  
Arpana Agrawal ◽  
Pratima Sen

1994 ◽  
Vol 76 (5) ◽  
pp. 917-922 ◽  
Author(s):  
K. DERAMAN ◽  
S. SAKRANI ◽  
B. B. ISMATL ◽  
Y. WAHAB ◽  
R. D. GOULD

Sign in / Sign up

Export Citation Format

Share Document