Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion

2018 ◽  
Vol 232 (9-11) ◽  
pp. 1647-1674 ◽  
Author(s):  
Chen Wang ◽  
Qiangang Fu ◽  
Dan Wen

Abstract Functionalized graphene aerogels (GAs) not only own the advantages of the original ones like large specific surface area, three-dimensional porous structures, high specific capacitance and excellent cyclic stability, but also realize the function expansion due to the collective properties endowed via different methods. These characteristics make them advantageous in some promising applications. In this minireview, we focus on the various functionalization methods of GAs and especially their use in the applications of energy storage and conversion like batteries, supercapacitors and fuel cells, etc.

2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2018 ◽  
Vol 6 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Yuxi Liu ◽  
Zechuan Xiao ◽  
Yongchang Liu ◽  
Li-Zhen Fan

N and S-co-doped activated corncob sponge of honeycomb-like porous carbon with the interconnected micro-meso-macropores and the large specific surface area was evaluated as an electrode material for flexible solid-state supercapacitors, exhibiting high specific capacitance, high energy–power density, and great cyclic stability.


2018 ◽  
Vol 11 (4) ◽  
pp. 772-799 ◽  
Author(s):  
Jiajun Mao ◽  
James Iocozzia ◽  
Jianying Huang ◽  
Kai Meng ◽  
Yuekun Lai ◽  
...  

Concerns over air quality reduction and energy crisis resulting from rapid consumption of limited fossil fuels have driven the development of clean and renewable energy sources.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanmei Jiang ◽  
Zegao Wang ◽  
Qian Yang ◽  
Luxi Tan ◽  
Lichun Dong ◽  
...  

Abstract Metal selenides, such as NiSe2, have exhibited great potentials as multifunctional materials for energy storage and conversation. However, the utilization of pure NiSe2 as electrode materials is limited by its poor cycling stability, low electrical conductivity, and insufficient electrochemically active sites. To remedy these defects, herein, a novel NiSe2/Ti3C2Tx hybrid with strong interfacial interaction and electrical properties is fabricated, by wrapping NiSe2 octahedral crystal with ultrathin Ti3C2Tx MXene nanosheet. The NiSe2/Ti3C2Tx hybrid exhibits excellent electrochemical performance, with a high specific capacitance of 531.2 F g−1 at 1 A g−1 for supercapacitor, low overpotential of 200 mV at 10 mA g−1, and small Tafel slope of 37.7 mV dec−1 for hydrogen evolution reaction (HER). Furthermore, greater cycling stabilities for NiSe2/Ti3C2Tx hybrid in both supercapacitor and HER have also been achieved. These significant improvements compared with unmodified NiSe2 should be owing to the strong interfacial interaction between NiSe2 octahedral crystal and Ti3C2Tx MXene, which provides enhanced conductivity, fast charge transfer as well as abundant active sites, and highlight the promising potentials in combinations of MXene with metal selenides for multifunctional applications such as energy storage and conversion.


2021 ◽  
Author(s):  
Qiongyi Xie ◽  
Hong Ou ◽  
Qingyun Yang ◽  
Xiaoming Lin ◽  
Akif Zeb ◽  
...  

In recent years, metal-organic frameworks (MOFs) have been widely used in various fields, including electrochemical energy storage and conversion because of their excellent properties, such as high specific surface area,...


SusMat ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 304-323
Author(s):  
Yanqiu Jiang ◽  
Fan Guo ◽  
Yingjun Liu ◽  
Zhen Xu ◽  
Chao Gao

Sign in / Sign up

Export Citation Format

Share Document