Polymeric nanoparticles for the drug delivery to the central nervous system

2008 ◽  
Vol 5 (2) ◽  
pp. 155-174 ◽  
Author(s):  
Giovanni Tosi ◽  
Luca Costantino ◽  
Barbara Ruozi ◽  
Flavio Forni ◽  
Maria Angela Vandelli
2012 ◽  
Vol 64 (7) ◽  
pp. 701-705 ◽  
Author(s):  
Toral Patel ◽  
Jiangbing Zhou ◽  
Joseph M. Piepmeier ◽  
W. Mark Saltzman

2019 ◽  
Vol 25 (17) ◽  
pp. 1933-1950 ◽  
Author(s):  
Maria R. Gigliobianco ◽  
Piera Di Martino ◽  
Siyuan Deng ◽  
Cristina Casadidio ◽  
Roberta Censi

Lysosomal Storage Disorders (LSDs), also known as lysosomal diseases (LDs) are a group of serious genetic diseases characterized by not only the accumulation of non-catabolized compounds in the lysosomes due to the deficiency of specific enzymes which usually eliminate these compounds, but also by trafficking, calcium changes and acidification. LDs mainly affect the central nervous system (CNS), which is difficult to reach for drugs and biological molecules due to the presence of the blood-brain barrier (BBB). While some therapies have proven highly effective in treating peripheral disorders in LD patients, they fail to overcome the BBB. Researchers have developed many strategies to circumvent this problem, for example, by creating carriers for enzyme delivery, which improve the enzyme’s half-life and the overexpression of receptors and transporters in the luminal or abluminal membranes of the BBB. This review aims to successfully examine the strategies developed during the last decade for the treatment of LDs, which mainly affect the CNS. Among the LD treatments, enzyme-replacement therapy (ERT) and gene therapy have proven effective, while nanoparticle, fusion protein, and small molecule-based therapies seem to offer considerable promise to treat the CNS pathology. This work also analyzed the challenges of the study to design new drug delivery systems for the effective treatment of LDs. Polymeric nanoparticles and liposomes are explored from their technological point of view and for the most relevant preclinical studies showing that they are excellent choices to protect active molecules and transport them through the BBB to target specific brain substrates for the treatment of LDs.


2016 ◽  
Vol 21 (3) ◽  
pp. 272-283 ◽  
Author(s):  
Guilong Zhang ◽  
Lukui Chen ◽  
Xiaoyuan Guo ◽  
Ahsan Khan ◽  
Yuchun Gu ◽  
...  

2010 ◽  
Vol 17 (6) ◽  
pp. 670-677 ◽  
Author(s):  
Emanuela Fabiola Craparo ◽  
Maria Luisa Bondì ◽  
Giovanna Pitarresi ◽  
Gennara Cavallaro

2016 ◽  
Vol 16 (6) ◽  
pp. 635-639 ◽  
Author(s):  
Seunggu J. Han ◽  
Krystof Bankiewicz ◽  
Nicholas A. Butowski ◽  
Paul S. Larson ◽  
Manish K. Aghi

2015 ◽  
Vol 122 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Russell R. Lonser ◽  
Malisa Sarntinoranont ◽  
Paul F. Morrison ◽  
Edward H. Oldfield

Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.


Sign in / Sign up

Export Citation Format

Share Document