nanoparticulate systems
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 56)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 3 ◽  
Author(s):  
Sujit K. Debnath ◽  
Rohit Srivastava

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a contagious virus that spreads exponentially across the world, resulting in serious viral pneumonia. Several companies and researchers have put their tremendous effort into developing novel vaccines or drugs for the complete eradication of COVID-19 caused by SARS-CoV-2. Bionanotechnology plays a vital role in designing functionalized biocompatible nanoparticulate systems with higher antiviral capabilities. Thus, several nanocarriers have been explored in designing and delivering drugs and vaccines. This problem can be overcome with the intervention of biomaterials or bionanoparticles. The present review describes the comparative analysis of SARS infection and its associated etiological agents. This review also highlighted some nanoparticles that have been explored in the treatment of COVID-19. However, these carriers elicit several problems once they come in contact with biological systems. Often, the body’s immune system treats these nanocarriers as foreign particles and antigens. In contrast, some bionanoparticles are highlighted here with their potential application in SARS-CoV-2. However, bionanoparticles have demonstrated some drawbacks discussed here with the possible outcomes. The scope of bioinspired nanoparticles is also discussed in detail to explore the new era of research. It is highly essential for the effective delivery of these nanoparticles to the target site. For effective management of SARS-CoV-2, different delivery patterns are also discussed here.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1226
Author(s):  
Hisham K. Al Rawas ◽  
Camila P. Ferraz ◽  
Joëlle Thuriot-Roukos ◽  
Svetlana Heyte ◽  
Sébastien Paul ◽  
...  

Furfural (FF) has a high potential to become a major renewable platform molecule to produce biofuels and bio-based chemicals. The catalytic performances of AuxPty and AuxPdy bimetallic nanoparticulate systems supported on TiO2 were studied in a base-free aerobic oxidation of furfural to furoic acid (FA) and maleic acid (MA) in water. The characterization of the catalysts was performed using standard techniques. The optimum reaction conditions were also investigated, including the reaction time, the reaction temperature, the metal ratio, and the metal loading. The present work shows a synergistic effect existing between Au, Pd, and Pt in the alloy, where the performances of the catalysts were strongly dependent on the metal ratio. The highest selectivity (100%) to FA was obtained using Au3-Pd1 catalysts, with 88% using 0.5% Au3Pt1 with about 30% of FF conversion at 80 °C. Using Au-Pd-based catalysts, the maximum yield of MA (14%) and 5% of 2(5H)-furanone (FAO) were obtained by using a 2%Au1-Pd1/TiO2 catalyst at 110 °C.


Author(s):  
Sharadwata Pan ◽  
Thomas B. Goudoulas ◽  
Jaison Jeevanandam ◽  
Kei Xian Tan ◽  
Shamik Chowdhury ◽  
...  

Invention of novel nanomaterials guaranteeing enhanced biomedical performance in diagnostics and therapeutics, is a perpetual initiative. In this regard, the upsurge and widespread usage of nanoparticles is a ubiquitous phenomenon, focusing predominantly on the application of submicroscopic (< 100 nm) particles. While this is facilitated attributing to their wide range of benefits, a major challenge is to create and maintain a balance, by alleviating the associated toxicity levels. In this minireview, we collate and discuss particularly recent advancements in therapeutic applications of metal and metal oxide nanoparticles in skin and cosmetic applications. On the one hand, we outline the dermatological intrusions, including applications in wound healing. On the other hand, we keep track of the recent trends in the development of cosmeceuticals via nanoparticle engrossments. The dermato-cosmetic applications of metal and metal oxide nanoparticles encompass diverse aspects, including targeted, controlled drug release, and conferring ultraviolet and antimicrobial protections to the skin. Additionally, we deliberate on the critical aspects in comprehending the advantage of rheological assessments, while characterizing the nanoparticulate systems. As an illustration, we single out psoriasis, to capture and comment on the nanodermatology-based curative standpoints. Finally, we lay a broad outlook and examine the imminent prospects.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1144
Author(s):  
Giada Botti ◽  
Alessandro Dalpiaz ◽  
Barbara Pavan

About 40 years ago the lipidization of hydrophilic drugs was proposed to induce their brain targeting by transforming them into lipophilic prodrugs. Unfortunately, lipidization often transforms a hydrophilic neuroactive agent into an active efflux transporter (AET) substrate, with consequent rejection from the brain after permeation across the blood brain barrier (BBB). Currently, the prodrug approach has greatly evolved in comparison to lipidization. This review describes the evolution of the prodrug approach for brain targeting considering the design of prodrugs as active influx substrates or molecules able to inhibit or elude AETs. Moreover, the prodrug approach appears strategic in optimization of the encapsulation of neuroactive drugs in nanoparticulate systems that can be designed to induce their receptor-mediated transport (RMT) across the BBB by appropriate decorations on their surface. Nasal administration is described as a valuable alternative to obtain the brain targeting of drugs, evidencing that the prodrug approach can allow the optimization of micro or nanoparticulate nasal formulations of neuroactive agents in order to obtain this goal. Furthermore, nasal administration is also proposed for prodrugs characterized by peripheral instability but potentially able to induce their targeting inside cells of the brain.


2021 ◽  
Vol 22 (15) ◽  
pp. 7987
Author(s):  
Paulo R. Lino ◽  
João Leandro ◽  
Lara Figueiredo ◽  
Mariana P. Amaro ◽  
Lídia M. D. Gonçalves ◽  
...  

Polymeric-based nano drug delivery systems have been widely exploited to overcome protein instability during formulation. Presently, a diverse range of polymeric agents can be used, among which polysaccharides, such as chitosan (CS), hyaluronic acid (HA) and cyclodextrins (CDs), are included. Due to its unique biological and physicochemical properties, CS is one of the most used polysaccharides for development of protein delivery systems. However, CS has been described as potentially immunogenic. By envisaging a biosafe cytocompatible and haemocompatible profile, this paper reports the systematic development of a delivery system based on CS and derived with HA and CDs to nanoencapsulate the model human phenylalanine hydroxylase (hPAH) through ionotropic gelation with tripolyphosphate (TPP), while maintaining protein stability and enzyme activity. By merging the combined set of biopolymers, we were able to effectively entrap hPAH within CS nanoparticles with improvements in hPAH stability and the maintenance of functional activity, while simultaneously achieving strict control of the formulation process. Detailed characterization of the developed nanoparticulate systems showed that the lead formulations were internalized by hepatocytes (HepG2 cell line), did not reveal cell toxicity and presented a safe haemocompatible profile.


Sign in / Sign up

Export Citation Format

Share Document