Toward Electronic Work Design

1988 ◽  
Vol 32 (11) ◽  
pp. 622-626
Author(s):  
Yung-Hui T. Lee

The dynamic behavior of a musculoskeletal link system in manual lifting is simulated by a mathematical model which contains a non-linear objective function and a set of linear, as well as non-linear constraints. The model was developed based upon the hypothesis that an individual performs the lifting motion following the principle of minimizing mechanical work done. The simulation model demonstrated that the associated differences between the predicted motion and the measured motion is biomechanically feasible and the accuracy is adequate enough with an average U statistics ranging from 0.012 to 0.2 09.

2013 ◽  
Vol 61 (2) ◽  
pp. 185-191
Author(s):  
Md Hasib Uddin Molla ◽  
M Babul Hasan

Formulation of LPs and IPs is a technique to convert real life decision problems into a mathematical model. This model consists of a linear objective function and a set of linear constraints expressed in the form of a system of equations or inequalities. In this paper, we present formulation from real life problem as an art. We discuss formulation through real life example and solve them using computer techniques AMPL and LINDO. DOI: http://dx.doi.org/10.3329/dujs.v61i2.17068 Dhaka Univ. J. Sci. 61(2): 185-191, 2013 (July)


2001 ◽  
Vol 7 (6) ◽  
pp. 433-440
Author(s):  
Valentinas Skaržauskas ◽  
Dovilė Merkevičiūtė ◽  
Juozas Atkočiūnas

In this article the theory of mathematical programming is used, composing improved mathematical models of nonlinear problems of frame loading optimization at shakedown and performing its numerical experiment. An elastic perfectly-plastic frame is considered. Frame geometry, material, load application places are considered known. Time independent load variation bounds are variable (history of loading is unknown). Mathematical model of load variation bounds optimization problem includes strength and stiffness constrains. The mentioned optimization load combines two problems. First problem is connected with the distribution of statically admissible moments at shakedown. This is a problem of residual bending moments analysis which is presented in two ways. In the first case it is formulated as a quadratic programming problem, where the objective function is non-linear, but the objective function of load optimization problem remains linear. The problem is solved by iterations, influential matrixes of residual displacements, and stresses are used. In next case, the equations of problem analysis and dependences are presented according to complete equation system of plasticity theory. Then the objective function of optimization problem becomes non-linear and it is solved in single stage. Solving the second problem, we check if it is possible to satisfy frame rigidity constrains, which are inferior or superior limits of residual displacement. This is considered as a linear programming problem. Mathematical model of frame load optimization problem at shakedown was made with the help of non-linear mathematical programming theory. Numerical experiment was realized with Rozen's gradients projecting method and using the penalty function techniques. Mathematical programming complementarity conditions prohibit taking into account the dechargable phenomena in some cross-sections, therefore analysis of residual deformation compatibility equations are performed, using linear mathematical programming.


2000 ◽  
Author(s):  
M. Bouazara ◽  
M. J. Richard

Abstract The primary purpose of this paper is to analyze the effects of vibrations on the comfort and stability of road vehicles as observed in the variation of different parameters such as suspension coefficients, road disturbances and the seat position. The conducting of this study required the development of a mathematical model to simulate the dynamic behavior of a 3-D vehicle. This model makes it possible to efficiently use various types of non-linear suspensions such as active and semi-active suspensions. The results obtained from the simulation of the 3-D vehicle demonstrated that the use of active and semi-active suspension models on road vehicles proved to be beneficial for comfort without unduly compromising stability.


2014 ◽  
Vol 704 ◽  
pp. 288-292
Author(s):  
Diana Katheryn Poveda Rodríguez ◽  
Villamizar Mejía Rodolfo ◽  
Jose Jorge Carreño Zagarra

This article deals with the tuning of a simplified non-linear model that represents the dynamic behavior of the manipulator arm PUMA MA2000, where excitation signals formed by a finite sum of harmonics Fourier series were used in order to obtain arm dynamical responses. Initially, non-linear mathematical model is derived by using the Euler-Lagrange notation, and then a simplified nonlinear model is obtained and tuned by using the experimental angular position measurements for waist, shoulder and elbow robot joints.


1974 ◽  
Vol 13 (03) ◽  
pp. 151-158 ◽  
Author(s):  
D. A. B. Lindbebo ◽  
Fr. R. Watson

Recent studies suggest the determinations of clinical laboratories must be made more precise than at present. This paper presents a means of examining benefits of improvement in precision. To do this we use a mathematical model of the effect upon the diagnostic process of imprecision in measurements and the influence upon these two of Importance of Diagnosis and Prevalence of Disease. The interaction of these effects is grossly non-linear. There is therefore no proper intuitive answer to questions involving these matters. The effects can always, however, be calculated.Including a great many assumptions the modeling suggests that improvements in precision of any determination ought probably to be made in hospital rather than screening laboratories, unless Importance of Diagnosis is extremely high.


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


1988 ◽  
Vol 16 (2) ◽  
pp. 62-77 ◽  
Author(s):  
P. Bandel ◽  
C. Monguzzi

Abstract A “black box” model is described for simulating the dynamic forces transmitted to the vehicle hub by a tire running over an obstacle at high speeds. The tire is reduced to a damped one-degree-of-freedom oscillating system. The five parameters required can be obtained from a test at a given speed. The model input is composed of a series of empirical relationships between the obstacle dimensions and the displacement of the oscillating system. These relationships can be derived from a small number of static tests or by means of static models of the tire itself. The model can constitute the first part of a broader model for description of the tire and vehicle suspension system, as well as indicating the influence of tire parameters on dynamic behavior at low and medium frequencies (0–150 Hz).


2021 ◽  
Vol 1 ◽  
pp. 2147-2156
Author(s):  
Pavel Livotov

AbstractThe internal crowdsourcing-based ideation within a company can be defined as an involvement of its staff, specialists, managers, and other employees, to propose solution ideas for a pre-defined problem. This paper addresses a question, how many participants of the company-internal ideation process are required to nearly reach the ideation limit for the problems with a finite number of workable solutions. To answer the research question, the author proposes a set of metrics and a non-linear ideation performance function with a positive decreasing slope and ideation limit for the closed-ended problems. Three series of experiments helped to explore relationships between the metric attributes and resulted in a mathematical model which allows companies to predict the productivity metrics of their crowdsourcing ideation activities such as quantity of different ideas and ideation limit as a function of the number of contributors, their average personal creativity and ideation efficiency of a contributors’ group.


Sign in / Sign up

Export Citation Format

Share Document