Parallel Fuzzy Logic and PI Controller for Transient Stability and Voltage Regulation of Power System Including Wind Turbine

2019 ◽  
Vol 1 (9) ◽  
pp. 53-58
Author(s):  
Issam GRICHE
Author(s):  
G. Fusco ◽  
M. Russo

This paper proposes a simple design procedure to solve the problem of controlling generator transient stability following large disturbances in power systems. A state-feedback excitation controller and power system stabilizer are designed to guarantee robustness against uncertainty in the system parameters. These controllers ensure satisfactory swing damping and quick decay of the voltage regulation error over a wide range of operating conditions. The controller performance is evaluated in a case study in which a three-phase short-circuit fault near the generator terminals in a four-bus power system is simulated.


2016 ◽  
Vol 19 (2) ◽  
pp. 16-24
Author(s):  
Quang Huu Vinh Luu

A new algorithm simulating the impacts of the VAR supporting devices such as the static var compensators (SVCs) and the synchronous condensers (SCs) under condition of symmetrical disturbances in multi-machine power system is mentioned. Some typical numerical examples are presented in this article. The comparisons of variation of the state parameters, such as the voltage, frequency, reactive power outputs and asynchronous torques…are simulated under condition of the action of the automatic voltage regulation systems of generators and of the VAR supporting devices. The transient energy margins are calculated and compared to assess the transient stability in multi-machine power system. Basing on this algorithm, the PC program uses the elements of the eigen-image matrix to bring the specific advantages for the simulation of the transient features of state variables.


2018 ◽  
Vol 17 (1) ◽  
pp. 107
Author(s):  
Gusti Made Ngurah Christy Aryanata ◽  
I Nengah Suweden ◽  
I Made Mataram

A good electrical power system is a system that can serve the load in a sustainable and stable voltage and frequency. Changes in frequency occur due to the demand of loads that change from time to time. The frequency setting of the PLTG power system depends on the active power charge in the system. This active power setting is done by adjusting the magnitude of the generator drive coupling. The frequency setting is done by increasing and decreasing the amount of primary energy (fuel) and carried on the governor. Simulation in governor analysis study as load frequency control at PLTG using fuzzy logic controller is done by giving four types of cultivation that is 0,1 pu, 0,2pu, 0,3 pu and 0,4 pu. The simulation is done to compare the dynamic frequency response output and the resulting stability time using fuzzy logic controller with PI controller. Based on the results of comparative analysis conducted to prove that governor as load frequency control using fuzzy logic control is better than using PI controller. This can be seen from the output response frequency and time stability.


2013 ◽  
Vol 2 (3) ◽  
pp. 216
Author(s):  
Rekha Chaudhary ◽  
Arun Kumar Singh

The objective of this paper is to design controller for non-linear power system using Direct Feedback Linearization technique to improve the transient stability and to achieve better voltage regulation. In case of fault in the power system, power angle and the terminal voltage are the parameters which are to be monitored. The simulation has been carried out taking different values of initial power angles and results were obtained for power angle and terminal voltage. To overcome the demerits of DFL-LQ optimal controller and DFL voltage regulator, co-ordinated controller is proposed. Simulation results show that transient stability of a power system under a large sudden fault has been improved by using co-ordinated controller.


Sign in / Sign up

Export Citation Format

Share Document