Performance Evaluation of 5TM Sensor for Real-Time Monitoring of Volumetric Water Content in Landfill Cover System

2019 ◽  
Vol 8 (1) ◽  
pp. 20180091
Author(s):  
Janarul Shaikh ◽  
Sudheer Kumar Yamsani ◽  
Sreedeep Sekharan ◽  
Ravi R. Rakesh

2019 ◽  
Vol 56 (12) ◽  
pp. 1863-1875 ◽  
Author(s):  
Charles W.W. Ng ◽  
R. Chen ◽  
J.L. Coo ◽  
J. Liu ◽  
J.J. Ni ◽  
...  

To promote environmental protection and sustainability, the use of plants and recycled wastes in geotechnical construction such as landfill covers is recommended. A landfill cover field test was conducted at the Shenzhen Xiaping landfill site, located in a humid climatic region of China. The main objective was to validate the field performance of a novel vegetated three-layer landfill cover system using recycled construction waste without the need of geomembrane. Unsieved completely decomposed granite and coarsely crushed concrete was used for the top and intermediate layers while sieved completely decomposed granite was used as the lowest layer. One section was transplanted with Bermuda grass while the other section was left bare. To assess the landfill cover performance, pore-water pressure, volumetric water content, percolation, and atmospheric parameters were measured for a period of 13 months under natural climatic conditions. The cumulative rainfall depth was about 2950 mm over the entire monitoring period. During rainfall, the presence of grass led to lower pore-water pressure (or higher suction) and volumetric water content in the three-layer landfill cover system. At the end of monitoring, the cumulative percolation was about 27 and 20 mm for the bare and grass-covered landfill covers, respectively. It is evident that the vegetated three-layer landfill cover system using recycled concrete without geomembrane can be effective in minimizing percolation in humid climates.



2018 ◽  
Vol 144 (9) ◽  
pp. 04018078 ◽  
Author(s):  
Janarul Shaikh ◽  
Sudheer Kumar Yamsani ◽  
Sreedeep Sekharan ◽  
Ravi R. Rakesh


2016 ◽  
Vol 44 ◽  
pp. 189-196 ◽  
Author(s):  
Éva Ujaczki ◽  
Viktória Feigl ◽  
Mónika Molnár ◽  
Emese Vaszita ◽  
Nikolett Uzinger ◽  
...  


2017 ◽  
Vol 69 ◽  
pp. 281-288 ◽  
Author(s):  
Marcel Schulte ◽  
Maik A. Jochmann ◽  
Tobias Gehrke ◽  
Andrea Thom ◽  
Tim Ricken ◽  
...  


2018 ◽  
Vol 36 (4) ◽  
pp. 361-372 ◽  
Author(s):  
Afshin Khoshand ◽  
Ali Fathi ◽  
Milad Zoghi ◽  
Hamidreza Kamalan

One of the most common and economical methods for waste disposal is landfilling. The landfill cover system is one of the main components of landfills which prevents waste exposure to the environment by creating a barrier between the waste and the surrounding environment. The stability and integrity of the landfill cover system is a fundamental part of the design, construction, and maintenance of landfills. A reinforced tapered landfill cover system can be considered as a practical method for improving its stability; however, the simultaneous effects of seismic and seepage forces in the reinforced tapered landfill cover system have not been studied. The current paper provides a solution based on the limit equilibrium method in order to evaluate the stability of a reinforced tapered landfill cover system under seismic and seepage (both horizontal and parallel seepage force patterns) loading conditions. The proposed analytical approach is applied to different design cases through parametric study and the obtained results are compared to those derived from literature. Parametric study is performed to illustrate the sensitivity of the safety factor (FS) to the different design parameters. The obtained results reveal that parameters which describe the geometry have limited effects on the stability of the landfill cover system in comparison to the rest of the studied design parameters. Moreover, the comparisons between the derived results and available methods demonstrate good agreement between obtained findings with those reported in the literature.



2017 ◽  
Vol 12 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
K. Kim ◽  
J. Sim ◽  
T.-H. Kim

This study presents soil-moisture calibrations using low-frequency (15–40 MHz) time domain reflectometry (TDR) probe, referred to as water content reflectometer (WCR), for measuring the volumetric water content of landfill cover soils, developing calibrations for 28 different soils, and evaluating how WCR calibrations are affected by soil properties and electrical conductivity. A 150-mm-diameter PVC cell was used for the initial WCR calibration. Linear and polynomial calibrations were developed for each soil. Although the correlation coefficients (R<sup>2</sup>) for the polynomial calibration are slightly higher, the linear calibrations are accurate and pragmatic to use. The effects of soil electrical conductivity and index properties were investigated using the slopes of linear WCR calibrations. Soils with higher electrical conductivity had lower calibration slopes due to greater attenuation of the signal during transmission in the soil. Soils with higher electrical conductivity tended to have higher clay content, organic matter, liquid limit, and plasticity index. The effects of temperature and dry unit weight on WCR calibrations were assessed in clayey and silty soils. The sensor period was found to increase with the temperature and density increase, with greater sensitivity in fine-textured plastic soils. For typical variations in temperature, errors in volumetric water content on the order of 0.04 can be expected for wet soils and 0.01 for drier soils if temperature corrections are not applied. Errors on the order of 0.03 (clays) and 0.01 (silts) can be expected for typical variations in dry unit weight (± 2 kN/m<sup>3</sup>).



2016 ◽  
Vol 142 (5) ◽  
pp. 04016007 ◽  
Author(s):  
Charles W. W. Ng ◽  
Jason L. Coo ◽  
Zhong Kui Chen ◽  
Rui Chen


Sign in / Sign up

Export Citation Format

Share Document