Test Method for Characterization of Metal-Oxide-Silicon (MOS) Structures by Capacitance-Voltage Measurements

1997 ◽  
Author(s):  
2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


2015 ◽  
Vol 5 (4) ◽  
pp. 695-705 ◽  
Author(s):  
Luis Gerling ◽  
Somnath Mahato ◽  
Cristobal Voz ◽  
Ramon Alcubilla ◽  
Joaquim Puigdollers

1999 ◽  
Vol 567 ◽  
Author(s):  
L-Å Ragnarsson ◽  
E. Aderstedt ◽  
P. Lundgren

ABSTRACTA comparative capacitance voltage method is used to investigate the equivalent thickness reduction during post metallization annealing of thermally grown ultrathin (∼15-27 Å) oxides. It is found that a double layered dielectric consisting of a thin Al2O3—SiO2 sandwich is appropriate to describe both the increased capacitance and the nearly unaltered current after anneal. It is further shown that the impact of initial thickness and method of growth — in a conventional furnace or by rapid thermal oxidation — on the equivalent thickness reduction is negligible.


2000 ◽  
Vol 338-342 ◽  
pp. 1117-1120 ◽  
Author(s):  
Einar Ö. Sveinbjörnsson ◽  
M. Ahnoff ◽  
H.Ö. Ólafsson

Sign in / Sign up

Export Citation Format

Share Document