scholarly journals Coefficient of Consolidation and its Correlation with Index Properties of Remolded Soils

2004 ◽  
Vol 27 (5) ◽  
pp. 10784 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
A Sridharan ◽  
HB Nagaraj
2018 ◽  
Vol 65 ◽  
pp. 06004
Author(s):  
Kok Shien Ng ◽  
Yee Ming Chew ◽  
Nur Izzati Ahmad Lazim

Compression index and coefficient of consolidation are two most important parameters in obtaining the consolidation characteristics of cohesive soil. Considerable time and effort are required to obtain these parameters from the oedometer test. Therefore, this study aims to correlate these two parameters with the index properties. Five remoulded samples are tested for their physical properties as well as their consolidation characteristics. The results show good relationship was obtained for the liquid limit and the compression index while the coefficient of consolidation is best correlated with the plastic limit. Multiple regression analysis was performed to improve the prediction. Liquid limit is best coupled with specific gravity to estimate the compression index while plastic limit and plastic index can be used to best predict the coefficient of consolidation.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 533-540 ◽  
Author(s):  
A. Koenig ◽  
J. N. Kay ◽  
I. M. Wan

In the context of landfilling dewatered wastewater sludge in Hong Kong, with landfills up to 140 m high, one of the most significant properties of sludge is its physical nature with regard to moisture characteristics and associated geotechnical stability. Commonly, lower limits are set on total solids content, but no geotechnical stability criteria are applied with the exception of Germany where a minimum requirement for vane shear strength is set at 25 kN/m2. The purpose of this study was to determine and evaluate dewatered wastewater sludge from three Hong Kong municipal wastewater treatment plants with regard to the following physical and geotechnical properties: (i) vane shear strength; (ii) consolidation characteristics such as compression index, compressibility factor, coefficient of consolidation and compressibility coefficient; and (iii) hydraulic characteristics such as permeability and intrinsic resistance. Although dewatered sludge exhibits quite different characteristics as compared to soils, predictive logarithmic relationships may be established between various properties which are consistent with the critical state model for soils, conventional filtration and consolidation theory. Such representation provides a valuable basis for understanding the sludge characteristics and behaviour to landfill design.


2020 ◽  
Vol 10 (14) ◽  
pp. 4737
Author(s):  
Chao Xu ◽  
Suli Pan

The coefficient of consolidation is traditionally considered as a constant value in soil consolidation calculations. This paper uses compression and recompression indexes to calculate the solution-dependent nonlinear compressibility, thus overconsolidation and normal consolidation are separated during the calculations. Moreover, the complex nonlinear consolidation can be described using the nonlinear compressibility and a nonlinear permeability. Then, the finite element discrete equation with consideration of the time-dependent load is derived, and a corresponding program is developed. Subsequently, a case history is conducted for verifying the proposed method and the program. The results show that the method is sufficiently accurate, indicating the necessity of considering nonlinearity for consolidation calculations. Finally, three cases are compared to reveal the importance of separating the overconsolidation and normal consolidation. Overall, this study concluded that it is inadequate to consider just one consolidation status in calculations, and that the proposed method is more reasonable for guiding construction.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


2015 ◽  
Vol 114 ◽  
pp. 77-84 ◽  
Author(s):  
Xiangjun Pei ◽  
Fanyu Zhang ◽  
Wanjiong Wu ◽  
Shouyun Liang
Keyword(s):  
Fly Ash ◽  

1986 ◽  
Vol 26 (3) ◽  
pp. 12-22 ◽  
Author(s):  
Ramesh C. Gupta ◽  
John L. Davidson

Sign in / Sign up

Export Citation Format

Share Document