Effect of cyclic wetting and drying on the index properties of a lime-stabilised expansive soil

Author(s):  
S. M. Rao ◽  
B. V. V. Reddy ◽  
M. Muttharam
Author(s):  
Richard Shumbusho ◽  
Gurmel S. Ghataora ◽  
Michael P.N. Burrow ◽  
Digne R. Rwabuhungu

This study was conducted to investigate the potential benefits of using geogrids in mitigating pavement defects notably roughness and longitudinal cracking on pavements built over expansive soils. The seasonal changes of expansive soils (periodic wetting and drying) cause detrimental effects on the overlying road pavements. Such detrimental behavior of expansive soils was simulated in a controlled laboratory environment through allowing cyclic wetting and drying of an expansive soil underlying a pavement section. The shrink/swell effects of the expansive soil subgrade were examined through monitoring its change in moisture, and measuring deformation of overlying pavement section. The experimental study suggested that a geogrid layer in a reinforced pavement section can reduce surface differential shrinking and swelling deformation resulting from underlying expansive soils by a factor of 2 and 3 respectively in comparison to unreinforced section. Given that an oedometer test which is typically used to predict swelling potential of expansive soils is known to overpredict in-situ soil swell, experimental program also investigated quantitatively the extent to which the oedometer can overestimate swelling behaviour of the real-field scenarios. It was found that oedometer percent swell can overpredict in-situ swelling behaviour of the expansive soil by a factor ranging between 2 and 10 depending upon the period over which the in-situ expansive soil has been in contact with water.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Bao-tian Wang ◽  
Can-hong Zhang ◽  
Xue-lian Qiu ◽  
En-yue Ji ◽  
Wen-hui Zhang

Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.


2013 ◽  
Vol 14 (4) ◽  
pp. 418-427 ◽  
Author(s):  
A. R. Estabragh ◽  
M. R.S. Pereshkafti ◽  
B. Parsaei ◽  
A. A. Javadi

Author(s):  
Jijo James ◽  
Alex Kirubhakaran ◽  
R. Balamurukan ◽  
V. Jawahar ◽  
S.S. Soorya

The investigation dealt with the stabilization of expansive soil with combinations of lime, steel slag and reinforced with two types of fibres, copper filaments and polypropylene fibres. The investigation began with the characterization of the soil for its geotechnical properties. The initial consumption of lime required for the modification of the soil properties was determined from the Eades and Grim pH test. Cylindrical specimens of soil with dimensions 38 mm x 76 mm were cast using this lime content as a stabilizer along with varying quantities of steel slag for determination of optimum steel slag content. The pure lime stabilized soil as well as lime-steel slag modified soil specimens were reinforced with different proportions of copper filaments for determination of optimum fibre content. One dosage of polypropylene fibres was also adopted as reinforcement in specimen preparation. The optimal combinations identified were then subjected to a maximum of three cycles of wetting and drying followed by determination of unconfined compression strength (UCS). The expansive soil required a minimum of 3% lime for its modification. The optimum dosage of steel slag was identified as 5% and optimum copper filament content as 1%. Polypropylene content of 0.3% was also adopted as one combination. The results of the investigation revealed that lime stabilized fibre-reinforced soil with copper filaments was the most durable combination followed by polypropylene fibres. The introduction of steel slag in the mix could not generate enough beneficial durability to the soil after three cycles of wetting and drying.


2020 ◽  
Vol 63 (3) ◽  
pp. 13-20
Author(s):  
Jijo James ◽  
Priya Jothi ◽  
P. Karthika ◽  
S. Kokila ◽  
V. Vidyasagar

The investigation focussed on the possibility of replacing lime in soil stabilization using Egg Shell Ash (ESA), a waste derived from poultry industry. An expansive soil was characterized for its properties in the lab. The minimum lime content required for modification of soil properties was determined from the Eades and Grim pH test. This lime content came out to be 3%. The lime content was replaced using ESA in the proportions of 33%, 50%, 67% and 100%. Unconfined compression test specimens of dimension 38 mm x 76 mm were cast for different combinations and were cured for periods of 3, 7 and 28 days. Samples were also subjected to 1, 3 and 5 cycles of wetting and drying to understand its durability. After the designated curing periods and cycles of wetting and drying, they were strained axially till failure. Atterberg limits tests were done to determine the plasticity of the stabilized soil. The strength results indicated that ESA cannot be used under normal conditions as a replacement for lime, however, ESA replacement resulted in good durability of the specimens under conditions of wetting and drying. It was concluded that ESA replacement of lime can be adopted in conditions of wetting and drying.


2021 ◽  
Vol 64 (2) ◽  
pp. 81-91
Author(s):  
Jijo James ◽  
Anupriya Natesan ◽  
Aswini Manohar ◽  
Vishvaa Subramanian

Cement/lime stabilization of soils is one of the common techniques adopted for improving its geotechnical properties. Lately, the focus of investigation has shifted to blended stabilization with industrial wastes as auxiliary additives. However, the role of blended cement in stabilization of soil has been studied insufficiently despite the fact that it is manufactured under controlled conditions. This investigation deals with the use of Portland pozzolana cement (PPC) instead of ordinary Portland cement (OPC) in the stabilization of an expansive soil subjected to alternate cycles of wetting and drying. Unconfined compression strength (UCS) test specimens of dimensions 38mm x 76mm were cast and cured for periods of 7, 14 and 21 days. Then, the specimens were subjected to 1, 2 and 3 cycles of wetting and drying and the UCS of the specimens were determined. Based on the results of the investigation, it was found that OPC performed significantly better than PPC under normal conditions. However, under conditions of wetting and drying, PPC stabilized soil performed much better than OPC stabilized soil when sufficient binder content was available.


2019 ◽  
Vol 5 (3) ◽  
pp. 624 ◽  
Author(s):  
Sarah Adnan Hussein ◽  
Haifaa Abd Al-Rasool Ali

Current research main aim is to study the effect of adding polypropylene fiber (PPF) on the behavior of expansive soil to reduce the swelling as percentage (0.5, 1 and 2%) of the weight of dry soil. Expansive soil used in this research was prepared artificially by mixing Ca-based bentonite from geological survey and mining company with sandy soil brought from Karbala city as percentage 80% bentonite to 20% sand of dry weight. Multiple laboratory tests have been carried are (Unconfined Compression Test, One-Dimensional Consolidation Test, Swelling Test, Sieve Analysis and Cycle Swell Shrink Test). A conventional odometer cell was modified to allow the study of swell- shrink cycle test to be carried out under controlled temperatures and surcharge pressure. The results showed that the increase in percentage of (PPF) led to decrease the swelling and to increase the unconfined compression strength. The wetting and drying results of (PPF) showed that with continuous cycles the effect of (PPF) keeps on reducing the swelling and the 2% of (PPF) produces less ratio of swell - shrink, which has obtained higher than 57 % in the improvement factor of swell and shrink.


Sign in / Sign up

Export Citation Format

Share Document