Appraisal of Solution Heat Treatment on Elimination of Hafnium Rich γ–γ′ Eutectic and Prior Particle Boundary Precipitate in a Superalloy Powder

2014 ◽  
Vol 3 (1) ◽  
pp. 20140034
Author(s):  
K. M. Oluwasegun ◽  
J. O. Olawale ◽  
M. O. Adeoye ◽  
O. E. Olorunniwo ◽  
O. O. Ige ◽  
...  
Author(s):  
S. Kimura ◽  
M. Sprenger ◽  
W. Kono ◽  
H. Takahashi ◽  
Y. Tongu

2020 ◽  
Author(s):  
Hemendra Patle ◽  
Venkateswarlu Badisha ◽  
Yogeshwar Chakrapani Venkatesan ◽  
Siva Irullappasamy ◽  
Ratna Sunil B ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 819
Author(s):  
Changsheng Li ◽  
Kun Li ◽  
Jingbo Dong ◽  
Jinyi Ren ◽  
Yanlei Song

The effect of aging on the precipitates, mechanical and magnetic properties of Fe-21Cr-15Ni-6Mn-Nb low magnetic stainless steel were investigated. The steel was aged at 550–750 °C for 2 h after solution heat treatment at 1100 °C for 1 h. During the aging treatment, the (Nb, V)(C, N) particles gradually precipitated in the grain, which were coherent or semi-coherent with the matrix. When the aging temperature was beyond 650 °C, the coarsening rate of (Nb, V)(C, N) particles increase rapidly and the coherent orientation between (Nb, V)(C, N) particles and the matrix was lost gradually. Meanwhile, coarse M23C6 was distributed at the grain boundary with chain shape, which was non-coherent with the matrix. The coarsening behavior of (Nb, V)(C, N) precipitates in the grain was analyzed, and the size of the particles precipitated after aging treatment at 650°C for different time was calculated and studied. After aging treatment at 650 °C for 2 h, the yield strength and tensile strength of the stainless steel was 705.6 MPa and 1002.3 MPa, the elongation and the relative magnetic permeability was 37.8% and 1.0035, respectively.


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Wakshum M. Tucho ◽  
Vidar Hansen

The widely adopted temperature for solid solution heat treatment (ST) for the conventionally fabricated Inconel 718 is 1100 °C for a hold time of 1 h or less. This ST scheme is, however, not enough to dissolve Laves and annihilate dislocations completely in samples fabricated with Laser metal powder bed fusion (L-PBF) additive manufacturing (AM)-Inconel 718. Despite this, the highest hardness obtained after aging for ST temperatures (970–1250 °C) is at 1100 °C/1 as we have ascertained in our previous studies. The unreleased residual stresses in the retained lattice defects potentially affect other properties of the material. Hence, this work aims to investigate if a longer hold time of ST at 1100 °C will lead to complete recrystallization while maintaining the hardness after aging or not. For this study, L-PBF-Inconel 718 samples were ST at 1100 °C at various hold times (1, 3, 6, 9, 16, or 24 h) and aged to study the effects on microstructure and hardness. In addition, a sample was directly aged to study the effects of bypassing ST. The samples (ST and aged) gain hardness by 43–49%. The high density of annealing twins evolved during 3 h of ST and only slightly varies for longer ST.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1276
Author(s):  
Eva Anne Mørtsell ◽  
Ida Westermann ◽  
Calin Daniel Marioara ◽  
Ketill Olav Pedersen ◽  
Sigmund Jarle Andersen ◽  
...  

Al–Mg–Si alloys are usually formed into their final shape by rolling or extrusion. After extrusion, the aluminium profiles are usually straightened, causing the material to be subjected to a small plastic deformation. This study demonstrates the positive effect on strength that can be obtained from such small deformation levels or from only elastically straining the material. Elastic straining of a lean Al–Mg–Si alloy, when performed immediately after solution heat treatment, enhances the material yield strength after artificial ageing to T6. Transmission electron microscopy shows that this effect can be attributed to a higher number density and finer dispersion of the age-hardening precipitate needles. Furthermore, introducing a small plastic deformation of 1% after solution heat treatment results in a comparable strength increase to elastically straining the material. In this case, however, the strength increase is due to the increased dislocation density, which compensates for a lower density of precipitate needles. Finally, by combining plastic deformation with a succeeding elastic strain, we demonstrate how elastic strain can cause an on-set of dislocation cell formation in this material.


2014 ◽  
Vol 58 ◽  
pp. 426-438 ◽  
Author(s):  
Y. Han ◽  
A.M. Samuel ◽  
H.W. Doty ◽  
S. Valtierra ◽  
F.H. Samuel

Sign in / Sign up

Export Citation Format

Share Document