Assessing the Effect of Altering Secondary Phase in Friction Stir Processed AZ91 Mg Alloy by Solution Heat Treatment

2020 ◽  
Author(s):  
Hemendra Patle ◽  
Venkateswarlu Badisha ◽  
Yogeshwar Chakrapani Venkatesan ◽  
Siva Irullappasamy ◽  
Ratna Sunil B ◽  
...  
2019 ◽  
Vol 33 ◽  
pp. 27-34 ◽  
Author(s):  
Sarafadeen Azeez ◽  
Madindwa Mashinini ◽  
Esther Akinlabi

2016 ◽  
Vol 867 ◽  
pp. 19-23 ◽  
Author(s):  
Itsaree Iewkitthayakorn ◽  
Somjai Janudom ◽  
Narissara Mahathaninwong

This research focused on the effect of solution heat treated microstructures on anodic oxide formations of casting 7075 Al alloy. The casting specimens were solution heat treated at 450°C for various holding. The results showed that the quality of anodic oxide film on the specimen with 4h solution heat treatment time was higher than that of at other conditions. Because its microstructures obtained the lowest amounts of secondary phase particles leading to improve the quality of oxide film and also reduce defects in oxide film. On the other hand, coarse black particles of Mg2Si formed increasingly in microstructures of specimens after solution treatment at prolong holding time of 8h and 16h resulted in discontinues oxide films forming on them.


2013 ◽  
Vol 749 ◽  
pp. 54-60
Author(s):  
Yao Qiang Gan ◽  
Lei Lu ◽  
Da Tong Zhang ◽  
Wei Wen Zhang ◽  
Yuan Yuan Li

A high strength Al-Cu-Mg alloy was prepared by squeeze casting. The effects of squeeze casting and heat treatment on the microstructures and mechanical properties of the alloy were studied. It was found that squeeze casting refined the microstructure and reduced the micro-segregation markedly, and also accelerated the diffusion process of solute atoms during solution heat treatment. Tensile strength and elongation of squeeze casting alloy were much higher than those of gravity casting alloy under both the as-cast and heat-treated conditions. In addition, the Al-Cu-Mg alloy prepared by squeeze casting showed good natural aging response, and the naturally-aged alloy possessed a slightly lower tensile strength but better elongation compared to full artificial aging. After solution heat treatment at 495 for 9h and further natural aging for 48h or artificial aging at 190 for 6h, the tensile strength of squeeze casting alloy reached to 472MPa and 475MPa, respectively, and the elongation was 18.9% and 12.7% accordingly. Based on the experimental results, the mechanism of microstructural evolution of squeeze casting Al-Cu-Mg alloy during heat treatment was discussed, and the effect of squeeze casting on the kinetics of solute diffusion and aging precipitation was studied.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 386 ◽  
Author(s):  
Yuchun Yuan ◽  
Qingfang Guo ◽  
Jiapeng Sun ◽  
Huan Liu ◽  
Qiong Xu ◽  
...  

Mechanical properties usually take precedence for wrought magnesium alloy when it would be used as a structure material. This paper proposed an approach that achieved high strength in AZ91 Mg alloy. The main procedure combined solution heat treatment, equal channel angular pressing (ECAP), and the subsequent low temperature rolling. After solution heat treatment and ECAP, the alloy had fine grains and excellent ductility, which benefited the following rolling at low temperature. By the following rolling (at 150 °C), the strength was further increased to ~432 MPa with a moderate ductility. This approach was proved effective in refining the grains and accumulating dislocations. The ultrahigh strength was attributed to the high density of dislocations and fine structure. The uniformly distributed fine precipitates also supplied precipitate hardening. Recrystallization that happened during rolling and annealing was the main reason for the moderate ductility.


2007 ◽  
Vol 124-126 ◽  
pp. 1357-1360
Author(s):  
Seon Mi Ha ◽  
Sang Shik Kim ◽  
Dong Yim Chang ◽  
Chang Gil Lee ◽  
Sung Joon Kim

The effect of prior T4 heat treatment and subsequent microstructural evolution on tensile behavior of friction stir welded (FSWed) AZ31B-H24 alloy was examined in this study. Selected AZ31B-H24 plates were prior T4 heat treated at 400 for 24 hours and subsequently friction stir welded. The tensile properties, optical micrographs and SEM fractographs for FSWed AZ31B-T4 specimens were compared with those for the H24 counterparts. Prior T4 heat treatment tended to decrease the tensile ductility reduction in FSWed AZ31B-H24 specimen. The tensile ductility reduction mechanism as associated with prior T4 heat treatment is discussed based on detailed micrographic and fractographic observations.


Author(s):  
H Yousefpour Naghibi ◽  
H Omidvar ◽  
M Farahmand Nikoo

In this study, 6 mm thick AA6061-T6 plates were friction stir welded (FSWed) at different traveling speeds while Al2O3 nano-particles were incorporated between adjoining plates. The solution heat treatment was applied on samples for one hour at 540 ℃ and subsequently aged for 18 h at 180 ℃ to investigate the effect of post-weld heat treatment on mechanical properties of specimens. All joints were investigated macro- and micro-structurally. The microstructural characterization of the FSWed samples was carried out using scanning electron microscopy (SEM) and light microscopy techniques. Distribution of Al2O3 nano-particles in the stir zone was studied by SEM. The specimen FSWed at 40 mm/min exhibited the most homogeneous particles distribution. Tensile properties including ultimate tensile strength, elongation, and fracture surfaces were studied. Microhardness of specimens was also investigated. Surprisingly, all specimens exhibited inferior hardness compared to the as-received AA6061-T6 alloy. This phenomenon was attributed to the dissolution of precipitates during FSW process.


2019 ◽  
Vol 63 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Prasad U. Syam ◽  
V. V. Kondaiah ◽  
K. Akhil ◽  
V. Vijay Kumar ◽  
B. Nagamani ◽  
...  

Abstract Magnesium and its alloys are now attracting a great attention as promising materials for several light weight engineering applications. ZE41 is a new Mg alloy contains Zinc, Zirconium and Rare Earth elements as the important alloying elements and is widely used in aerospace applications. In the present study, heat treatment has been carried out at two different temperatures (300 and 335 °C) to assess the effect of heat treatment on microstructure and corrosion behavior of ZE41 Mg alloy. The grain size was observed as almost similar for the unprocessed and heat treated samples. Decreased amount of secondary phase (MgZn2) was observed after heat treating at 300 °C and increased intermetallic phase (Mg7Zn3) and higher number of twins appeared for the samples heat treated at 335 °C. Microhardness measurements showed increased hardness after heat treating at 300 °C and decreased hardness after heat treating at 335 °C which can be attributed to the presence of higher supersaturated grains after heat treating at 300 °C. The samples heat treated at 335 °C exhibited better corrosion resistance compared to those of base materials and samples heat treated at 300 °C. From the results, it can be understood that the selection of heat treatment temperature is crucial that depends on the requirement i.e. to improve the microhardness or at the loss of microhardness to improve the corrosion resistance of ZE41 Mg alloy.


Sign in / Sign up

Export Citation Format

Share Document