Phytotoxic Evaluation of Commercial Pesticide Products Formulated with Low and High Flash Point Hydrocarbon Fluids

Author(s):  
RL Sandler ◽  
GV Chambers ◽  
RA Verbelen ◽  
A Herold
1999 ◽  
Vol 40 (4-5) ◽  
pp. 123-130 ◽  
Author(s):  
S. Malato ◽  
J. Blanco ◽  
C. Richter ◽  
B. Milow ◽  
M. I. Maldonado

Particulate suspensions of TiO2 irradiated with natural solar tight in a large experimental plant catalyse the oxidation of organic contaminants. The problem in using TiO2 as a photocatalyst is electron/hole recombination. One strategy for inhibiting e−/h+ recombination is to add other (irreversible) electron acceptors to the reaction. In many highly toxic waste waters where degradation of organic pollutants is the major concern, the addition of an inorganic anion to enhance the organic degradation rate may be justified. For better results, these additives should fulfil the following criteria: dissociate into harmless by-products and lead to the formation of ·OH or other oxidising agents. In this paper, we attempt to demonstrate the optimum conditions for the treatment of commercial pesticide rinsates found in the wastewater produced by a pesticide container recycling plant. The experiments were performed in one of the pilot plants of the largest solar photocatalytic system in Europe, the Detoxification Plants of the Plataforma Solar de Almería (PSA), in Spain. After testing ten different commercial pesticides, results show that peroxydisulphate enhances the photocatalytic miniralization of all of them. This study is part of an extensive project focused on the design of a solar photocatalytic plant for decontamination of agricultural rinsates in Almería (Spain).


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalie Hoidal ◽  
Robert L Koch

Abstract Economic thresholds (ETs) are a foundational principle of integrated pest management but are not always widely accepted by farmers and agricultural professionals. This article reports on a survey of Minnesota farmer and agricultural professional perceptions of the ET for soybean aphid, Aphis glycines Matsumura (Hempitera: Aphididae). We discuss insights for Extension programs on how to frame the importance of thresholds and teach stakeholders to use them effectively. Key takeaways include farmers and agricultural professionals often worry about combined effects of insect, disease, and physiological pressures, whereas effects of interactions with these other stressors are seldom discussed in educational outreach. Across groups, there is a fundamental misunderstanding about the difference between ETs and economic injury level. Many survey participants reported believing in the ET but lacked the time and capacity to fully implement it. Sales agronomists and farmers were the least likely groups to trust the university-determined soybean aphid ET, whereas commercial pesticide applicators and independent consultants were the most likely groups to trust it. Based on these results, we recommend adapting communication about ETs based on the target audience to address common misconceptions and barriers to ET use that are unique to each group.


1999 ◽  
Vol 7 (5) ◽  
pp. 10-11
Author(s):  
Richard W. Dapson

First, it matters not a bit what others are doing, even if they are doing it with the full knowledge and permission of their wastewater treatment officials. This is because every treatment plant is different, and must set its own limits on chemical waste. Approval must be obtained from local officials.Getting permission from one's own group of officials may be a pleasant or difficult experience, but the way can be eased a bit by being prepared. Realize that most of them do not know what our histological chemicals are, so provide them with the OSHA mandated hazard codes {e.g., flammable, corrosive, carcinogenic, etc.). They also want to know flash point, pH, miscibility with water and odor (if strong).


Sign in / Sign up

Export Citation Format

Share Document