Extreme Pressure and Anti-Wear Properties of Lubricants: A Critical Study of Current Test Methods and Suggestions for the Future

Author(s):  
MA Plint ◽  
AF Alliston-Greiner
2011 ◽  
Vol 314-316 ◽  
pp. 143-146
Author(s):  
Xin Feng ◽  
Yan Qiu Xia

AISI 1045 steels were laser-clad with Ni-based powder by CO2 HJ-4 coherent laser. The phase composition of the laser-cladding coating was investigated by means of X-ray diffraction (XRD). The cross-section of the cladding coating was observed using a scanning electron microscopy (SEM). The friction and wear properties of the laser cladding coatings sliding against AISI 52100 steel under the lubrication of liquid paraffin containing various anti-wear and extreme pressure additives were investigated using an Optimol SRV reciprocating motion friction and wear tester. Results showed that the laser-cladding coating considerably decreased coefficient of friction and increased wear resistance in sliding against AISI 52100 steel and attributed to the change in the hardness, phase composition of the laser-cladding coating and tribochemical reactions between the laser-cladding coating and the extreme pressure and anti-wear additives.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Tingting Wang ◽  
Zhan Wang ◽  
Hao Chen ◽  
Kang Dai ◽  
Xinlei Gao

Abstract Triazine derivatives are a kind of lubricant additives with excellent tribological properties. It is of great significance to study the quantitative relationship between their chemical structure and tribological properties. In the present study, the quantitative structure tribo-ability relationships (QSTR) between 20 triazine derivatives and their respective extreme-pressure properties as lubricant additives were analyzed by the back propagation neural network (BPNN) method. The BPNN-QSTR model had satisfactory stability and predictive ability (R2 = 0.9965, R2(LOO) = 0.9195, q2 = 0.8274). The anti-wear model also yielded good predictions (R2 = 0.9757, R2(LOO) = 0.6261, q2 = 0.8022). Two- and three-dimensional structural descriptors were used to analyze molecular structures that affected extreme-pressure and anti-wear properties. The results indicate that the three-dimensional molecular dimensions and the bonding modes of the skeleton atoms in the molecules were important factors. In addition, the effects of N, P, O, and other hetero-atoms on the tribological properties were reflected in their corresponding group types and electronic structures.


Author(s):  
B. D. Newbury ◽  
D. P. Fairchild ◽  
C. A. Prescott ◽  
T. D. Anderson ◽  
A. J. Wasson

Abstract C-Mn steels are extensively used as line pipe material for sour service oil and gas applications, i.e. in the presence of hydrogen sulfide (H2S), because of their ease of fabrication, weldability and significantly lower cost compared to Corrosion Resistant Alloys (CRAs). However, use of C-Mn steel in sour conditions can be limited by its susceptibility to various hydrogen damage mechanisms such as sulfide stress cracking (SSC) and hydrogen induced cracking (HIC). Presently, there are several industry standards which provide guidelines for materials selection and qualification testing to ensure the integrity of carbon steel pipelines in sour service. In recent years, examples of line pipe susceptibility to SSC have occurred due to undetected Local Hard Zones (LHZs) produced during steel plate manufacture. A companion paper (Fairchild, et al, [1]) describes historical and one newly recognized root causes for LHZs. Due to this newly recognized root cause, the adequacy of the current industry practice for specifying and qualifying C-Mn line pipe for severe sour service should be evaluated. In this work, a new approach to monitoring steel plate manufacture during Thermo Mechanical Controlled Processing (TMCP) in order to manage LHZs is explained. Results from implementing this qualification approach will be discussed. In addition, several gaps were identified in the current test methods and various potential modifications to address these gaps were identified. Based on the results of these studies, recommendations to the test methods are made to improve the robustness in the materials qualification process used for sour pipeline projects.


Author(s):  
A. Drescher ◽  
D. E. Newcomb ◽  
W. Zhang

The diametral indirect tension test is a convenient configuration for determining the modulus of asphalt concrete samples. The resilient modulus test has been a traditional approach to characterizing the stiffness of asphalt concrete, but it leaves much to be desired when considering the viscous behavior this material exhibits, even at low temperatures. A method for determining the complex compliance, complex modulus, and phase angle of asphalt mixtures using the indirect tensile test and a haversine load history is presented here. This test may be performed over a range of frequencies and temperatures as demonstrated on materials used in the Minnesota Road Research Project. The use of the haversine loading simplifies the test when compared with the pulse loading and rest time used in the resilient modulus test, and it allows for the characterization of the elastic and viscous components of the material's overall behavior, which is very difficult, at best, with the current test methods.


2012 ◽  
Vol 616-618 ◽  
pp. 1736-1740
Author(s):  
Lei Jiao ◽  
Yu Tao Zhao ◽  
Zhong Zhong Zhang ◽  
Yan Wei Yang ◽  
Ming Rui Zhang

With pulse magnetic field, it is use 2124-K2ZrF6-KBF4 as matrix metal to produce chemical reaction to gain (Al3Zr+ZrB2) p/2124 composite materials in this paper. In this paper, For the sake of researching the microstructure, the morphology, the size and the matrix distribution characteristics of the reinforced grain of prepared composite material , those test methods are used, such as optical microscopy, scanning electron microscope, X-ray diffraction analysis and so on. We will research the magnetic field strength how to influence size and distribution of Al3Zr +ZrB2 particle and the abrasion performance of (Al3Zr+ZrB2)P/2124 composite materials in the room temperature. Wear experiment is proceeding in the CETR UMT 3-V the testing machine and sliding friction is friction way with pin-disc but without lubricant, then analyzes the wear mechanism.


Sign in / Sign up

Export Citation Format

Share Document