Air Infiltration and Ventilation Centre's Guide to Air Exchange Rate and Airtightness Measurement Techniques

2009 ◽  
pp. 295-295-9
Author(s):  
PS Charlesworth
2019 ◽  
Vol 887 ◽  
pp. 571-578
Author(s):  
Boris Bielek ◽  
Daniel Szabó

To meet the increasingly stringent requirements of standard energy consumption and thus reducing operating costs of buildings, it is necessary to use energy-saving elements of technical equipment and eliminate heat loss through the building envelope. The biggest losses are caused by heat transmission and ventilation in the form of uncontrolled air infiltration through the building envelope. Their elimination can be achieved by improving the thermal technical quantification of building envelope and increase its airtightness. Determination of air permeability as a measure of quality building envelope is possible using the method of measuring devices Blower-Door test. Any defects can be detected by detection tools, then propose a suitable method for their removal and thus prevent unwanted unregulated air infiltration into the interior. On the other hand, are opposed to the health requirements required air exchange in the room, which is a significant reason for the transformation of this mode of ventilation by uncontrolled air infiltration to a controllable ventilation system. The subject of the paper is in-situ measurement of air permeability of specific apartment envelope by Blower-Door test method and comparison the efficacy of the installed controlled ventilation system and hygiene requirements of the ventilation intensity for residential buildings. Laboratory verification of façade ventilation unit parameters in big pressure chamber - measurement of inlet ventilation flap airflows at variable pressure differences. Methodology for the measurement by Blower-Door test method to determine the air permeability of building envelope structures and functionality of controlled ventilation system was based on a series of 10 measurements in 5 regimes. The overall air permeability of the building envelope or its integrated part may be verified using the total air exchange rate n50at 50 Pa pressure difference, determined experimentally according to STN EN 13829. Comparison of measured values with standard values recommended by some European countries with a similar climate with sealed and with unsealed ventilation flaps, which can determine the impact on the overall airtightness of the building envelope. Calculation of total hygiene required air exchange rate of the apartment and its comparison with actual measured values by Blower-Door test method.


2007 ◽  
pp. 151-160
Author(s):  
H. Majdoubi ◽  
T. Boulard ◽  
A. Hanafi ◽  
H. Fatnassi ◽  
H. Demrati ◽  
...  

2018 ◽  
Vol 28 (7) ◽  
pp. 914-926 ◽  
Author(s):  
Ochuko Kelvin Overen ◽  
Edson Leroy Meyer ◽  
Golden Makaka ◽  
Sosten Ziuku ◽  
Sampson Mamphweli

2014 ◽  
Vol 29 (suppl.) ◽  
pp. 52-58
Author(s):  
Franz Roessler ◽  
Jai Azzam ◽  
Volker Grimm ◽  
Hans Hingmann ◽  
Tina Orovwighose ◽  
...  

The energy conservation regulation provides upper limits for the annual primary energy requirements for new buildings and old building renovation. The actions required could accompany a reduction of the air exchange rate and cause a degradation of the indoor air quality. In addition to climate and building specific aspects, the air exchange rate is essentially affected by the residents. Present methods for the estimation of the indoor air quality can only be effected under test conditions, whereby the influence of the residents cannot be considered and so an estimation under daily routine cannot be ensured. In the context of this contribution first steps of a method are presented, that allows an estimation of the progression of the air exchange rate under favourable conditions by using radon as an indicator. Therefore mathematical connections are established that could be affirmed practically in an experimental set-up. So this method could provide a tool that allows the estimation of the progression of the air exchange rate and in a later step the estimation of a correlating progression of air pollutant concentrations without limitations of using the dwelling.


Indoor Air ◽  
1997 ◽  
Vol 7 (3) ◽  
pp. 198-205 ◽  
Author(s):  
Robert Walinder ◽  
Dan Norback ◽  
Gunilla Wieslander ◽  
Greta Smedje ◽  
Claes Erwall

2011 ◽  
Vol 374-377 ◽  
pp. 430-435
Author(s):  
Wei Wei Du ◽  
Cui Cui Qin ◽  
Li Hua Zhao

Reasonable determination of indoor ventilation rates are the main content of residential ventilation designs, and can save consumption by air conditioners. Firstly, the energy saving potential of ventilation cooling technology in Guangzhou is analyzed in this paper. The cooling load of a residential building in Guangzhou with different air exchange rates is simulated by the DeST-h after indoor heating quantity of different rooms is set. The energy saving rate is analyzed, the functional relation between energy saving rate of ventilation and air exchange rate is obtained using the linear-regression analysis method. After a comprehensive consideration of various factors, including variation of energy efficiency, room volume, air outlet size, and that the maximum air exchange rates of different rooms are fixed.


2018 ◽  
Vol 63 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Miroslava Kmecová ◽  
Michal Krajčík ◽  
Zuzana Straková

The aim of this study was to design a fire ventilation system with impulse jet fans for an underground car park. With respect to the number of parameters affecting the spread of smoke that need to be considered, there is a good chance of miscalculations if only conventional plain calculations are used in the design process. To avoid mistakes, visualize the fluid flow, and to compare the design variants it is practical to use computational fluid dynamics (CFD). In this study, CFD simulations were used to compare alternative designs of a fire ventilation system. In one alternative the exhaust shafts were located in both parts of the car park and the jet fans were directed to the corresponding shafts. The air exchange rate was 10-times per hour. In another alternative both exhaust shafts were located on one side opposite to the main air supply, and the air exchange rate was 15-times per hour. The results showed preference of the second alternative, when the smoke was completely exhausted and the visibility improved substantially, whereas in the first alternative the car park was not sufficiently ventilated even 600 seconds after the fire had been put out. The results emphasize that proper location of elements of the ventilation system is crucial to attain high efficiency of fire ventilation.


Sign in / Sign up

Export Citation Format

Share Document