Internal Probe to Detect Defects from Cascades—In-situ Ion Irradiation Experiments Revisited

Author(s):  
Shiori Ishino ◽  
Naoto Sekimura ◽  
Hiroaki Abe
2007 ◽  
Vol 4 (2) ◽  
pp. 100644
Author(s):  
S. W. Dean ◽  
Shiori Ishino ◽  
Naoto Sekimura ◽  
Hiroaki Abe

Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2020 ◽  
Author(s):  
Ítalo M. Oyarzabal ◽  
Matheus A. Tunes ◽  
Osmane Camara ◽  
Emily Aradi ◽  
Anamul H. Mir ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 2640-2643
Author(s):  
Chris McRobie ◽  
Ryan Schoell ◽  
Tiffany Kaspar ◽  
Daniel Schreiber ◽  
Djamel Kaoumi

2008 ◽  
Vol 1122 ◽  
Author(s):  
Karl R. Whittle ◽  
Katherine L. Smith ◽  
Mark G. Blackford ◽  
Simon A.T. Redfern ◽  
Elizabeth J. Harvey ◽  
...  

AbstractSynthetic pyrochlore samples Y2Ti2-xSnxO7 (x=0.4, 0.8, 1.2, 1.6), Nd2Zr2O7, Nd2Zr1.2Ti0.8O7, and La1.6Y0.4Hf2O7, were irradiated in-situ using the IVEM-TANDEM microscope facility at the Argonne National Laboratory. The critical temperatures for amorphisation have revealed a dramatic increase in tolerance with increasing Sn content for the Y2Ti2-xSnxO7 series. This change has also found to be linear with increasing Sn content. Nd2Zr1.2Ti0.8O7 and La1.6Y0.4Hf2O7 were both found to amorphise, while Nd2Zr2O7 was found to be stable to high doses (2.5×10^15 ions cm-2). The observed results are presented with respect to previously published results for irradiation stability predictions and structural disorder.


2019 ◽  
Vol 39 (4) ◽  
pp. 726-734 ◽  
Author(s):  
Guillaume Victor ◽  
Yves Pipon ◽  
Nathalie Moncoffre ◽  
Nicolas Bérerd ◽  
Claude Esnouf ◽  
...  

2011 ◽  
Vol 1354 ◽  
Author(s):  
Jean Paul Allain ◽  
Osman El-Atwani ◽  
Alex Cimaroli ◽  
Daniel L. Rokusek ◽  
Sami Ortoleva ◽  
...  

ABSTRACTIon-beam sputtering (IBS) has been studied as a means for scalable, mask-less nanopatterning of surfaces. Patterning at the nanoscale has been achieved for numerous types of materials including: semiconductors, metals and insulators. Although much work has been focused on tailoring nanopatterning by systematic ion-beam parameter manipulation, limited work has addressed elucidating on the underlying mechanisms for self-organization of multi-component surfaces. In particular there has been little attention to correlate the surface chemistry variation during ion irradiation with the evolution of surface morphology and nanoscale self-organization. Moreover the role of surface impurities on patterning is not well known and characterization during the time-scale of modification remains challenging. This work summarizes an in-situ approach to characterize the evolution of surface chemistry during irradiation and its correlation to surface nanopatterning for a variety of multi-components surfaces. The work highlights the importance and role of surface impurities in nanopatterning of a surface during low-energy ion irradiation. In particular, it shows the importance of irradiation-driven mechanisms in GaSb(100) nanopatterning by low-energy ions and how the study of these systems can be impacted by oxide formation.


Sign in / Sign up

Export Citation Format

Share Document