Evaluation and Repair of Thin Brick Veneer Facades

2010 ◽  
pp. 147-147-23
Author(s):  
Janelle L. Leafblad ◽  
Carolyn L. Searls
Keyword(s):  
Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 237
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

To design energy-efficient buildings, energy assessment programs need to be developed for determining the inside air temperature, so that thermal comfort of the occupant can be sustained. The internal temperatures could be calculated through computational fluid dynamics (CFD) analysis; however, miniscule time steps (seconds and milliseconds) are used by a long-term simulation (i.e., weeks, months) that require excessive time for computing wind effects results even for high-performance personal computers. This paper examines a new method, wherein the wind effect surrounding the buildings is integrated with the external air temperature to facilitate wind simulation in building analysis over long periods. This was done with the help of an equivalent temperature (known as Tnatural), where the convection heat loss is produced in an equal capacity by this air temperature and by the built-in wind effects. Subsequently, this new external air temperature Tnatural can be used to calculate the internal air temperature. Upon inclusion of wind effects, above 90% of the results were found to be within 0–3 °C of the perceived temperatures compared to the real data (99% for insulated cavity brick (InsCB), 91% for cavity brick (CB), 93% for insulated reverse brick veneer (InsRBV) and 94% for insulated brick veneer (InsBV) modules). However, a decline of 83–88% was observed in the results after ignoring the wind effects. Hence, the presence of wind effects holds greater importance in correct simulation of the thermal performance of the modules. Moreover, the simulation time will expectedly reduce to below 1% of the original simulation time.


2008 ◽  
pp. 115-115-17 ◽  
Author(s):  
AM Memari ◽  
M Aliaari ◽  
AA Hamid

2020 ◽  
Vol 10 (22) ◽  
pp. 8057 ◽  
Author(s):  
Aiman Albatayneh ◽  
Dariusz Alterman ◽  
Adrian Page ◽  
Behdad Moghtaderi

Energy-efficient building design needs an accurate way to estimate temperature inside the building which facilitates the calculation of heating and cooling energy requirements in order to achieve appropriate thermal comfort for occupants. Sky temperature is an important factor for any building assessment tool which needs to be precisely determined for accurate estimation of the energy requirement. Many building simulation tools have been used to calculate building thermal performance such as Autodesk Computational Fluid Dynamics (CFD) software, which can be used to calculate building internal air temperature but requires sky temperature as a key input factor for the simulation. Real data obtained from real-sized house modules located at University of Newcastle, Australia (southern hemisphere), were used to find the impact of different sky temperatures on the building’s thermal performance using CFD simulation. Various sky temperatures were considered to determine the accurate response which aligns with a real trend of buildings’ internal air temperature. It was found that the internal air temperature in a building keeps either rising or decreasing if higher or lower sky temperature is chosen. This significantly decreases the accuracy of the simulation. It was found that using the right sky temperature values for each module, Cavity Brick Module (CB) Insulated Cavity Brick Module (InsCB), Insulated Brick Veneer Module (InsBV) and Insulated Reverse Brick Veneer Module (InsRBV), will result in 6.5%, 7.1%, 6.2% and 6.4% error correspondingly compared with the real data. These errors mainly refer to the simulation error. On the other hand using higher sky temperatures by +10 °C will significantly increase the simulation error to 16.5%, 17.5%, 17.1% and 16.8% and lower sky temperature by +10 °C will also increase the error to 19.3%, 22.6%, 21.9% and 19.1% for CB, InsCB, InsBV and InsRBV modules, respectively.


Author(s):  
Swapan Saha ◽  
Dharma Hagare ◽  
Jiaqi Zhou ◽  
Md Kamrul Hassan

Space cooling and heating in residential sector is significant contributor to energy consumption in Australia. Therefore, it is important to reduce the cooling and heating requirements. The selection of a good walling system helps to save energy by homes. This research compared the thermal efficiency of a modern house (constructed using brick veneer walls with concrete floor slab) with an old house (constructed using fibro cement walls raised timber floor) using the AccuRate simulation tool. A standard house with two living rooms, one kitchen, one laundry and four bedrooms are simulated in a Sydney Suburb in Australia. It was found that modern house showed lower inside temperature variation than the old house all year around. The results also showed that the modern house has a lower energy consumption for space heating and cooling than the old house. The annual energy use for space heating and cooling in both the modern house and old house were 5197 kWh and 15,712 kWh respectively. Moreover, the annual energy costs were found to be $1,403 and $4,242 respectively for modern and old houses. The modern brick veneer house saved about 33 % of energy compared to old old house. When the net present value of the energy cost for f both houses over 50 years is computed, the energy cost of modern house was found to be $25,629 while it of old house is was $77,488 for the old house.


2010 ◽  
Vol 7 (3) ◽  
pp. 102730
Author(s):  
Janelle L. Leafblad ◽  
Carolyn L. Searls ◽  
J. Farny ◽  
W. Behie ◽  
S. W. Dean
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document