Loading Mixity on the Interfacial Failure Mode in Lead-Free Solder Joint

2011 ◽  
pp. 121-121-18
Author(s):  
Feng Gao ◽  
Jianping Jing ◽  
Frank Z. Liang ◽  
Richard L. Williams ◽  
Jianmin Qu
2010 ◽  
Vol 7 (5) ◽  
pp. 103021
Author(s):  
Feng Gao ◽  
Jianping Jing ◽  
Frank Z. Liang ◽  
Richard L. Williams ◽  
Jianmin Qu ◽  
...  

Author(s):  
Feng Gao ◽  
Jianping Jing ◽  
Frank Z. Liang ◽  
Richard L. Williams ◽  
Jianmin Qu

One of the major failure modes in lead-free solder joints is the brittle fracture at the solder/Cu pad interface under dynamic loading conditions. Such brittle fracture often leads to catastrophic premature failure of portable electronic devices. Therefore, it is desirable to design the package and the solder joints in such a way that brittle interfacial fracture can be avoided during drop test. To develop such design guidelines, we studied in this paper the dynamic failure of a single solder joint (SSJ). The SSJs with different geometry and substrate surface finish were prepared by laser-cutting from a BGA package assembled on a printed circuit board (PCB). The SSJs were tested under various shear loading rates, ranging from 5 mm/s to 500 mm/s. In conjunction with the experimental tests, finite element analyses (FEA) of these SSJ samples subjected to various loading rates were also conducted. Results from both experimental testing and numerical simulations show that the distribution of plastic strain near the solder/IMC interface is a key indictor of the failure mode. For a given sample geometry and loading rate, if the maximum solder plastic strain lies near the solder/IMC interface, the failure will be more likely to be ductile failure within the solder alloy. On the other hand, if the maximum plastic strain is mainly located at the edge of the interface between solder and the IMC layer with very little plasticity within the solder near the interface, brittle fracture of the IMC/Cu interface will be more likely to occur. Since numerically computing the plastic strain distribution in a solder joint is much easier than predicting joint failure, results of this study provide us with an effective means to predict the type of failure mode of a solder joint under dynamic loading.


2009 ◽  
Vol 517 (14) ◽  
pp. 4255-4259 ◽  
Author(s):  
Jong-Min Kim ◽  
Seung-Wan Woo ◽  
Yoon-Suk Chang ◽  
Young-Jin Kim ◽  
Jae-Boong Choi ◽  
...  

2016 ◽  
Vol 46 (3) ◽  
pp. 1674-1682 ◽  
Author(s):  
Yan Li ◽  
Olen Hatch ◽  
Pilin Liu ◽  
Deepak Goyal

Author(s):  
Kanji Takagi ◽  
Masaki Wakabayashi ◽  
Junichi Inoue ◽  
Qiang Yu ◽  
Takahiro Akutsu

This paper proposes the high reliable design method for lead-free solder joint on metal substrate on chip component. First, the crack propagation analysis method for estimating rupture life of solder joint was constructed. And then, the effect of material properties of insulating layer on metal substrate and solder joint shape for rupture life of solder joint was evaluated using crack propagation analysis. As the result, the relation between young’s modulus of insulating layer and rupture life was indicated quantitatively. Also, the relation of filet length for rupture life of solder joint was evaluated. Secondary, evaluation method of heat dissipation for metal substrate was proposed. Because thermal conductivity of insulating layer affects temperature rise of heating device. And, the relation between thermal conductivity of insulating layer and temperature rise of heating device was indicated.


2007 ◽  
Vol 345-346 ◽  
pp. 1393-1396
Author(s):  
Ouk Sub Lee ◽  
Man Jae Hur ◽  
Yeon Chang Park ◽  
Dong Hyeok Kim

It is well-known that the vibration significantly affect the life of solder joint. In this paper, the effects of the vibration on the failure probability of the solder joint are studied by using the failure probability models such as the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). The accuracies of the results are estimated by a help of the Monte Carlo Simulation (MCS). The reliability of the lead and the lead-free solder joint was also evaluated. The reliability of lead-free solder joint is found to be higher than that of lead solder joint.


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


Sign in / Sign up

Export Citation Format

Share Document