scholarly journals Tracking mitochondrial density and positioning along a growing neuronal process in individual C. elegans neuron using a long-term growth and imaging microfluidic device

eNeuro ◽  
2021 ◽  
pp. ENEURO.0360-20.2021
Author(s):  
Sudip Mondal ◽  
Jyoti Dubey ◽  
Anjali Awasthi ◽  
Guruprasad Reddy Sure ◽  
Amruta Vasudevan ◽  
...  
2020 ◽  
Author(s):  
Sudip Mondal ◽  
Jyoti Dubey ◽  
Anjali Awasthi ◽  
Guruprasad Reddy Sure ◽  
Sandhya P. Koushika

AbstractThe long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and sub-cellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show inter-animal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in sub-cellular events such as organelle positions, we developed a microfluidic device to feed and immobilize C. elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo. Sub-cellular imaging of an individual neuron in multiple animals, over 36 hours in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles at synapses, both organelles with important roles in neurons. Long-term imaging of individual C. elegans touch receptor neurons identifies addition of new mitochondria and interacts with other moving mitochondria only through fission and fusion events. The addition of new mitochondria takes place along the entire neuronal process length and the threshold for the addition of a new mitochondrion is when the average separation between the two pre-existing mitochondria exceeds 24 micrometers.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (23) ◽  
pp. 4513-4522 ◽  
Author(s):  
Hyewon Lee ◽  
Shin Ae Kim ◽  
Sean Coakley ◽  
Paula Mugno ◽  
Marc Hammarlund ◽  
...  

We present a high-density microfluidic device for target-selective illumination, selective stimulation, and long-term monitoring ofC. elegans.


2020 ◽  
Author(s):  
Anjali Awasthi ◽  
Souvik Modi ◽  
Sneha Hegde ◽  
Anusheela Chatterjee ◽  
Sudip Mondal ◽  
...  

AbstractDensity of mitochondria and their localization at specific sub-cellular regions of the neurons is regulated by molecular motors, their adaptors and the cytoskeleton. However, the regulation of the mitochondrial density, the positioning of mitochondria along the neuronal process and the role of axonal mitochondria in neuronal function remain poorly understood. This study shows that the density of mitochondria in C. elegans touch receptor neuron processes remains constant through development. Simulations show that mitochondrial positioning along parts of the neuronal process that are devoid of synapses is regulated. Additionally, we also demonstrate that axonal mitochondria are necessary for maintaining touch responsiveness.


2018 ◽  
Author(s):  
Guruprasada Reddy Sure ◽  
Anusheela Chatterjee ◽  
Nikhil Mishra ◽  
Vidur Sabharwal ◽  
Swathi Devireddy ◽  
...  

AbstractWe investigate the role of axonal transport in regulating neuronal mitochondrial density. We show that the density of mitochondria in the touch receptor neuron (TRN) of adult Caenorhabditis elegans is constant. Mitochondrial density and transport are controlled both by the Kinesin heavy chain and the Dynein-Dynactin complex. However, unlike in other models, the presence of mitochondria in C. elegans TRNs depends on Kinesin light chain as well. Mutants in the three C. elegans miro genes do not alter mitochondrial density in the TRNs. Mutants in the Kinesin-1 associated proteins, UNC-16/JIP3 and UNC-76/FEZ1, show increased mitochondrial density and also have elevated levels of both the Kinesin Heavy and Light Chains in neurons. Genetic analyses suggest that, the increased mitochondrial density at the distal end of the neuronal process in unc-16 and unc-76 depends partly on Dynein. We observe a net anterograde bias in the ratio of anterograde to retrograde mitochondrial flux in the neuronal processes of unc-16 and unc-76, likely due to both increased Kinesin-1 and decreased Dynein in the neuronal processes. Our study shows that UNC-16 and UNC-76 indirectly limit mitochondrial density in the neuronal process maintaining a balance in anterograde and retrograde mitochondrial axonal transport.


2021 ◽  
Author(s):  
Simon Berger ◽  
Silvan Spiri ◽  
Andrew deMello ◽  
Alex Hajnal

Several microfluidic-based methods for long-term C. elegans imaging have been introduced in recent years, allowing real-time observation of previously inaccessible processes. The ex-isting methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method, which allows parallel live-imaging across multiple larval stages, while delivering excellent immobilization and maintaining worm orientation and identity over time. This is achieved by employing an array of microfluidic trap channels carefully tuned to maintain worms in a stable orienta-tion, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition, with the animals remaining free for most of an experiment. Excellent quality images can be ac-quired of multiple worms in parallel, with little impact of the imaging method on worm via-bility or developmental timing. The capabilities of this methodology are demonstrated by observing the hypodermal seam cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate RNAi on-chip, which allows for perturbation of dynamic developmental processes, such as basement membrane breaching during anchor cell invasion.


2020 ◽  
Author(s):  
Miguel A. Casal ◽  
Santiago Galella ◽  
Oscar Vilarroya ◽  
Jordi Garcia-Ojalvo

Neuronal networks provide living organisms with the ability to process information. They are also characterized by abundant recurrent connections, which give rise to strong feed-back that dictates their dynamics and endows them with fading (short-term) memory. The role of recurrence in long-term memory, on the other hand, is still unclear. Here we use the neuronal network of the roundworm C. elegans to show that recurrent architectures in living organisms can exhibit long-term memory without relying on specific hard-wired modules. A genetic algorithm reveals that the experimentally observed dynamics of the worm’s neuronal network exhibits maximal complexity (as measured by permutation entropy). In that complex regime, the response of the system to repeated presentations of a time-varying stimulus reveals a consistent behavior that can be interpreted as soft-wired long-term memory.A common manifestation of our ability to remember the past is the consistence of our responses to repeated presentations of stimuli across time. Complex chaotic dynamics is known to produce such reliable responses in spite of its characteristic sensitive dependence on initial conditions. In neuronal networks, complex behavior is known to result from a combination of (i) recurrent connections and (ii) a balance between excitation and inhibition. Here we show that those features concur in the neuronal network of a living organism, namely C. elegans. This enables long-term memory to arise in an on-line manner, without having to be hard-wired in the brain.


2020 ◽  
Author(s):  
Edward R. Ivimey-Cook ◽  
Kris Sales ◽  
Hanne Carlsson ◽  
Simone Immler ◽  
Tracey Chapman ◽  
...  

AbstractDietary restriction increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here we investigated the effect of dietary restriction by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in C. elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction in the parental generation (P0), it has a wide range of both positive and deleterious effects on future generations (F1-F3). Remarkably, great-grandparental exposure to TF in early-life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of dietary restriction underscoring the need to consider fitness of future generations in pursuit of healthy ageing.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 1802-1802
Author(s):  
Simon Berger ◽  
Evelyn Lattmann ◽  
Tinri Aegerter-Wilmsen ◽  
Michael Hengartner ◽  
Alex Hajnal ◽  
...  

Correction for ‘Long-term C. elegans immobilization enables high resolution developmental studies in vivo’ by Simon Berger et al., Lab Chip, 2018, 18, 1359–1368.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ulfar Bergthorsson ◽  
Caroline J. Sheeba ◽  
Anke Konrad ◽  
Tony Belicard ◽  
Toni Beltran ◽  
...  

Abstract Background Transposable elements (TEs) are an almost universal constituent of eukaryotic genomes. In animals, Piwi-interacting small RNAs (piRNAs) and repressive chromatin often play crucial roles in preventing TE transcription and thus restricting TE activity. Nevertheless, TE content varies widely across eukaryotes and the dynamics of TE activity and TE silencing across evolutionary time is poorly understood. Results Here, we used experimentally evolved populations of C. elegans to study the dynamics of TE expression over 409 generations. The experimental populations were evolved at population sizes of 1, 10 and 100 individuals to manipulate the efficiency of natural selection versus genetic drift. We demonstrate increased TE expression relative to the ancestral population, with the largest increases occurring in the smallest populations. We show that the transcriptional activation of TEs within active regions of the genome is associated with failure of piRNA-mediated silencing, whilst desilenced TEs in repressed chromatin domains retain small RNAs. Additionally, we find that the sequence context of the surrounding region influences the propensity of TEs to lose silencing through failure of small RNA-mediated silencing. Conclusions Our results show that natural selection in C. elegans is responsible for maintaining low levels of TE expression, and provide new insights into the epigenomic features responsible.


Sign in / Sign up

Export Citation Format

Share Document