scholarly journals Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice

eNeuro ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. ENEURO.0511-19.2020
Author(s):  
Meike M. Rogalla ◽  
K. Jannis Hildebrandt
2017 ◽  
Vol 22 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Qiuhong Huang ◽  
Yongkang Ou ◽  
Hao Xiong ◽  
Haidi Yang ◽  
Zhigang Zhang ◽  
...  

Hypothesis: The miR-34a/Bcl-2 signaling pathway may play a role in the mechanisms related to age-related hearing loss (AHL) in the auditory cortex. Background: The auditory cortex plays a key role in the recognition and processing of complex sound. It is difficult to explain why patients with AHL have poor speech recognition, so increasing numbers of studies have focused on its central change. Although micro (mi)RNAs in the central nervous system have recently been increasingly reported to be associated with age-related diseases, the molecular mechanisms of AHL in the auditory cortex are not fully understood. Methods: The auditory brainstem response was used to assess the hearing ability of C57BL/6 mice, and q-PCR, immunohistochemistry, and Western blotting were used to detect the expression levels of miR-34a and Bcl-2 in the mouse auditory cortex. TUNEL and DNA fragmentation were adopted to detect the apoptosis of neurons in the auditory cortex. To verify the relationship of miR-34a and Bcl-2, we transfected an miR-34a mimic or miR-34a inhibitor into primary auditory cortex neurons. Results: In this study, miR-34a/Bcl-2 signaling was examined in auditory cortex neurons during aging. miR-34a and apoptosis increased in the auditory cortex neurons of C57BL/6 mice with aging, whereas an age-related decrease in Bcl-2 was determined. In the primary neurons of the auditory cortex, miR-34a overexpression inhibited Bcl-2, leading to an increase in apoptosis. Moreover, miR-34a knockdown increased Bcl-2 expression and diminished apoptosis. Conclusion: Our results support a link between age-related apoptosis in auditory cortex neurons and miR-34a/Bcl-2 signaling, which may serve as a potential mechanism of the expression of AHL in the auditory cortex.


2020 ◽  
Vol 12 (8) ◽  
pp. 987-995
Author(s):  
Shifei Wang ◽  
Cheng Rao ◽  
Xingyu Huang ◽  
Tianhong Xie ◽  
Linling Su ◽  
...  

Age-related hearing loss (AHL) is a common, high-incidence, perceptual disease in the elderly population worldwide. Since bisphenol A (BPA) has been reported to associate with cell apoptosis, we hypothesize that BPA can inhibit the neuronal apoptosis in AHL. Forty Wistar rats were recruited to model AHL; they were then treated with different doses of BPA. We used auditory brainstem response testing to measure the BPA-induced improvement in the rats’ hearing. We examined the proliferation and apoptosis of the auditory cortical neurons in the rats with MTT assay and flow cytometry. Also, to delineate the underlying mechanism of BPA’s effect on AHL, we quantitated the expression level of long non-coding RNA X inactive specific transcript (lncRNA XIST) and miR-34a-5p in the rats’ auditory cortex with a novel method called nanoparticle PCR. We found that BPA intervention improved the hearing of AHL model rats, enhanced neuronal cell proliferation, restricted neuronal cell apoptosis, upregulated miR-34a-5p levels, and downregulated lncRNA XIST levels. The dual-luciferase reporter (DLR) assay revealed that BPA inhibited the apoptosis of auditory cortex neurons by targeting miR-34a-5p with lncRNA XIST and regulated the process of AHL. Therefore, we come to a conclusion that BPA contributes to the improvement of AHL, which may be achieved by upregulating miR-34a-5p and inhibiting the apoptosis of auditory cortex neurons via lncRNA XIST.


2014 ◽  
Vol 51 ◽  
pp. 8-14 ◽  
Author(s):  
Hao Xiong ◽  
Min Dai ◽  
Yongkang Ou ◽  
Jiaqi Pang ◽  
Haidi Yang ◽  
...  

Author(s):  
Qian Li ◽  
Yang-hong Xiang ◽  
Xiao-jun Liang ◽  
Yun Zhang ◽  
Peng-peng Zhao ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 233121651985726 ◽  
Author(s):  
Mark A. Eckert ◽  
Kenneth I. Vaden ◽  
Judy R. Dubno

Age-related hearing loss has been associated with varied auditory cortex morphology in human neuroimaging studies. These findings have suggested that peripheral auditory system declines cause changes in brain morphology but could also be due to latent variables that affect the auditory periphery and brain. The current longitudinal study was designed to evaluate these explanations for pure-tone threshold and brain morphology associations. Thirty adults (mean age at Time 1 = 64.12 ± 10.32 years) were studied at two time points (average duration between visits = 2.62 ± 0.81 years). Small- to medium-effect size associations were observed between high-frequency pure-tone thresholds and auditory cortex gray matter volume at each time point. Although there were significant longitudinal changes in low- and high-frequency hearing measures and brain morphology, those longitudinal changes were not significantly correlated across participants. High-frequency hearing measures at Time 1 were significantly related to more lateral ventricle expansion, such that participants with higher measures exhibited larger increases in ventricle size. This ventricle effect was statistically independent of high-frequency hearing associations with auditory cortex morphology. Together, these results indicate that there are at least two mechanisms for associations between age-related hearing loss and brain morphology. Potential explanations for a direct hearing loss effect on brain morphology, as well as latent variables that likely affect both the inner ear and brain, are discussed.


2016 ◽  
Vol 21 (5) ◽  
pp. 326-332 ◽  
Author(s):  
Qiuhong Huang ◽  
Hao Xiong ◽  
Haidi Yang ◽  
Yongkang Ou ◽  
Zhigang Zhang ◽  
...  

Bcl-2, the first gene shown to be involved in apoptosis, is a potent regulator of cell survival and known to have protective effects against a variety of age-related diseases. However, the possible relationship between hearing and Bcl-2 expression in the cochlea or auditory cortex of C57BL/6 mice, a mouse model of age-related hearing loss, is still unknown. Using RT-PCR, immunohistochemistry, and Western blot analysis, our results show that Bcl-2 is strongly expressed in the inner hair cells and spiral ganglion neurons of young mice. In addition, moderate Bcl-2 expression is also detected in the outer hair cells and in the neurons of the auditory cortex. A significant reduction of Bcl-2 expression in the cochlea or auditory cortex is also associated with elevated hearing thresholds and hair cell loss during aging. The expression pattern of Bcl-2 in the peripheral and central auditory systems suggests that Bcl-2 may play an important role in auditory function serving as a protective molecule against age-related hearing loss.


2017 ◽  
Author(s):  
Muriel TN Panouillères ◽  
Riikka Möttönen

AbstractOlder adults often experience difficulties in understanding speech, partly because of age-related hearing loss. In young adults, activity of the left articulatory motor cortex is enhanced and it interacts with the auditory cortex via the left-hemispheric dorsal stream during speech processing. Little is known about the effect of ageing and age-related hearing loss on this auditory-motor interaction and speech processing in the articulatory motor cortex. It has been proposed that up-regulation of the motor system during speech processing could compensate for hearing loss and auditory processing deficits in older adults. Alternatively, age-related auditory deficits could reduce and distort the input from the auditory cortex to the articulatory motor cortex, suppressing recruitment of the motor system during listening to speech. The aim of the present study was to investigate the effects of ageing and age-related hearing loss on the excitability of the tongue motor cortex during listening to spoken sentences using transcranial magnetic stimulation and electromyography. Our results show that the excitability of the tongue motor cortex was facilitated during listening to speech in young and older adults with normal hearing. This facilitation was significantly reduced in older adults with hearing loss. These findings suggest a decline of auditory-motor processing of speech in adults with age-related hearing loss.


2012 ◽  
Vol 13 (5) ◽  
pp. 703-713 ◽  
Author(s):  
Mark A. Eckert ◽  
Stephanie L. Cute ◽  
Kenneth I. Vaden ◽  
Stefanie E. Kuchinsky ◽  
Judy R. Dubno

Sign in / Sign up

Export Citation Format

Share Document