scholarly journals Differential regulation of calcium/calmodulin-dependent protein kinase II and p42 MAP kinase activity by synaptic transmission

1994 ◽  
Vol 14 (3) ◽  
pp. 1320-1331 ◽  
Author(s):  
TH Murphy ◽  
LA Blatter ◽  
RV Bhat ◽  
RS Fiore ◽  
WG Wier ◽  
...  
Reproduction ◽  
2004 ◽  
Vol 128 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Junya Ito ◽  
Natsuko Kawano ◽  
Masumi Hirabayashi ◽  
Masayuki Shimada

The objective of this study was to investigate the role of calmodulin-dependent protein kinase II (CaMKII) during fertilization in the pig. Since it has been reported that CaMKII is involved in the capacitation and acrosome reaction of spermatozoa, we tested whether supplementation with the CaMKII inhibitor, KN-93, in the fertilization medium affected sperm penetration. The results showed that the addition of KN-93 in the fertilization medium significantly reduced the rate of sperm penetration into oocytes. However, pre-treatment with KN-93 beforein vitrofertilization (IVF) did not significantly affect sperm penetration, but it did affect pronuclear formation in a dose-dependent manner. In the oocytes pre-treated with KN-93 before IVF and then co-cultured with spermatozoa without the drug, the decrease in p34cdc2kinase and the cyclin B1 level were significantly suppressed as compared with those in penetrated oocytes without treatment with KN-93. However, the decrease in MAP kinase activity was not affected by KN-93. Additional treatment with KN-93 after Ca2+ionophore treatment also inhibited the reduction in p34cdc2kinase activity and the cyclin B1 level, but not MAP kinase activity. Treatment with KN-92, an inactive KN-93 analogue, did not significantly affect sperm penetration and pronuclear formation. In conclusion, the activation of CaMKII by artificial stimuli or sperm stimulated the disruption of cyclin B1 and the inactivation of p34cdc2kinase, but did not affect MAP kinase inactivation during oocyte activation in pigs.


1993 ◽  
Vol 609 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
M. Neal Waxham ◽  
Robert C. Malenka ◽  
Paul T. Kelly ◽  
Michael D. Mauk

1998 ◽  
Vol 67 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Wendy W. Waters ◽  
Pat L. Chen ◽  
Newell H. McArthur ◽  
Pete A. Moreno ◽  
Paul G. Harms

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
D. E. Johnson ◽  
A. Hudmon

Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly concentrated in the brain where its activation by the Ca2+sensor CaM, multivalent structure, and complex autoregulatory features make it an ideal translator of Ca2+signals created by different patterns of neuronal activity. We provide direct evidence that graded levels of kinase activity and extent of T287(T286αisoform) autophosphorylation drive changes in catalytic output and substrate selectivity. The catalytic domains of CaMKII phosphorylate purified PSDs much more effectively when tethered together in the holoenzyme versus individual subunits. Using multisubstrate SPOT arrays, high-affinity substrates are preferentially phosphorylated with limited subunit activity per holoenzyme, whereas multiple subunits or maximal subunit activation is required for intermediate- and low-affinity, weak substrates, respectively. Using a monomeric form of CaMKII to control T287autophosphorylation, we demonstrate that increased Ca2+/CaM-dependent activity for all substrates tested, with the extent of weak, low-affinity substrate phosphorylation governed by the extent of T287autophosphorylation. Our data suggest T287autophosphorylation regulates substrate gating, an intrinsic property of the catalytic domain, which is amplified within the multivalent architecture of the CaMKII holoenzyme.


Sign in / Sign up

Export Citation Format

Share Document