scholarly journals Calcium Influx through NMDA Receptors Directly Evokes GABA Release in Olfactory Bulb Granule Cells

2000 ◽  
Vol 20 (13) ◽  
pp. 5124-5134 ◽  
Author(s):  
Brian Halabisky ◽  
Daniel Friedman ◽  
Milan Radojicic ◽  
Ben W. Strowbridge
2009 ◽  
Vol 101 (4) ◽  
pp. 2052-2061 ◽  
Author(s):  
Ambarish S. Ghatpande ◽  
Alan Gelperin

The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that results in γ-aminobutyric acid (GABA) release onto mitral/tufted cells. We demonstrate that the broad-spectrum cholinergic agonist carbachol triggers glutamate release from mitral/tufted cells that activates both AMPA and NMDA receptors on granule cells. Activation of the granule cell glutamate receptors leads to calcium influx through voltage-gated calcium channels, resulting in spike-independent, asynchronous GABA release at reciprocal dendrodendritic synapses that granule cells form with mitral/tufted cells. This cholinergic modulation of glutamate release persists through much of postnatal bulbar development, suggesting a functional role for cholinergic inputs from the basal forebrain in bulbar processing of olfactory inputs and possibly in postnatal development of the olfactory bulb.


2018 ◽  
Author(s):  
Vanessa Lage-Rupprecht ◽  
Li Zhou ◽  
Gaia Bianchini ◽  
S. Sara Aghvami ◽  
Max Mueller ◽  
...  

AbstractIn the rodent olfactory bulb the smooth dendrites of the principal glutamatergic mitral cells (MCs) form reciprocal dendrodendritic synapses with large spines on GABAergic granule cells (GC), where unitary release of glutamate can trigger postsynaptic local activation of voltage-gated Na+-channels (Navs), i.e. a spine spike. Can such single MC input evoke reciprocal release? We find that unitary-like activation via two-photon uncaging of glutamate causes GC spines to release GABA both synchronously and asynchronously onto MC dendrites. This release indeed requires activation of Navs and high-voltage-activated Ca2+-channels (HVACCs), but also of NMDA receptors (NMDAR). Simulations show temporally overlapping HVACC- and NMDAR-mediated Ca2+-currents during the spine spike, and ultrastructural data prove NMDAR presence within the GABAergic presynapse. This cooperative action of presynaptic NMDARs allows to implement synapse-specific, activity-dependent lateral inhibition and thus could provide an efficient solution to combinatorial percept synthesis in a sensory system with many receptor channels.


2015 ◽  
Vol 113 (4) ◽  
pp. 1234-1248 ◽  
Author(s):  
Mavis Irwin ◽  
Ann Greig ◽  
Petr Tvrdik ◽  
Mary T. Lucero

Ca2+ activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2–P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca2+ imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca2+ oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca2+ activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca2+ activity contributes to neonatal OB development.


Neuron ◽  
2000 ◽  
Vol 25 (3) ◽  
pp. 625-633 ◽  
Author(s):  
Wei R. Chen ◽  
Wenhui Xiong ◽  
Gordon M. Shepherd

2017 ◽  
Author(s):  
Hannah A. Arnson ◽  
Ben W. Strowbridge

AbstractOlfactory sensory input is detected by receptor neurons in the nose which then send information to the olfactory bulb, the first brain region for processing olfactory information. Within the olfactory bulb, many local circuit interneurons, including axonless granule cells, function to facilitate fine odor discrimination. How interneurons interact with principal cells to affect bulbar processing is not known though the mechanism is likely to be different than in sensory cortical regions since the olfactory bulb lacks an obvious topographical organization; neighboring glomerular columns, representing inputs from different receptor neuron subtypes, typically have different odor tuning. Determining the spatial scale over which interneurons such as granule cells can affect principal cells is a critical step towards understanding how the olfactory bulb operates. We addressed this question by assaying inhibitory synchrony using intracellular recordings from pairs of principal cells with different inter-somatic spacing. We find that in acute rat olfactory bulb slices, inhibitory synchrony is evident in the spontaneous synaptic input in mitral cells separated up to 300 μm. At all inter-somatic spacing assayed, inhibitory synchrony was dependent on fast Na+ channels, suggesting that action potentials in granule cells function to coordinate GABA release at relatively distant dendrodendritic synapses formed throughout the the dendritic arbor. Our results suggest that individual granule cells are able to influence relatively large groups of mitral and tufted cells belonging to clusters of at least 15 glomerular modules, providing a potential mechanism to integrate signals reflecting a wide variety of odorants.


Author(s):  
Tiffany Ona Jodar ◽  
Vanessa Lage-Rupprecht ◽  
Nixon M. Abraham ◽  
Christine R. Rose ◽  
Veronica Egger

AbstractIn the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output.To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2+- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1/2_Δ[Ca2+]i ~500 ms and t1/2_Δ[Na+]i ~1000 ms. We also analysed the kinetics of already existing data of postsynaptic spine Ca2+-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ~400 ms, range 20 ms - >1000 ms). This slow rise was independent of Ca2+ entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2+ entry in ΔGluA2 GCs (with AMPARs rendered Ca2+-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly.Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Vanessa Lage-Rupprecht ◽  
Li Zhou ◽  
Gaia Bianchini ◽  
S Sara Aghvami ◽  
Max Mueller ◽  
...  

In the rodent olfactory bulb the smooth dendrites of the principal glutamatergic mitral cells (MCs) form reciprocal dendrodendritic synapses with large spines on GABAergic granule cells (GC), where unitary release of glutamate can trigger postsynaptic local activation of voltage-gated Na+-channels (Navs), that is a spine spike. Can such single MC input evoke reciprocal release? We find that unitary-like activation via two-photon uncaging of glutamate causes GC spines to release GABA both synchronously and asynchronously onto MC dendrites. This release indeed requires activation of Navs and high-voltage-activated Ca2+-channels (HVACCs), but also of NMDA receptors (NMDAR). Simulations show temporally overlapping HVACC- and NMDAR-mediated Ca2+-currents during the spine spike, and ultrastructural data prove NMDAR presence within the GABAergic presynapse. This cooperative action of presynaptic NMDARs allows to implement synapse-specific, activity-dependent lateral inhibition, and thus could provide an efficient solution to combinatorial percept synthesis in a sensory system with many receptor channels.


2005 ◽  
Vol 93 (3) ◽  
pp. 1285-1294 ◽  
Author(s):  
Giulietta Pinato ◽  
Jens Midtgaard

Active dendritic membrane properties were investigated by whole cell recordings from adult turtle olfactory bulb granule cells. The laminar structure of the olfactory bulb allowed differential polarization of the distal apical dendrites versus the somatic part of the cells by an external electric field. Dendritic depolarization evoked small (∼10 mV) all-or-none depolarizing events of ∼10-ms duration. These spikelets often occurred in bursts at high frequency (≤250 Hz); they were present despite the application of synaptic and gap junction antagonists, but were abolished by TTX and intracellularly applied QX314. The spikelets were interpreted as attenuated sodium spikes initiated in different branches of the granule cells dendrites. They occurred spontaneously, but could also be evoked by excitatory postsynaptic potentials (EPSPs) to the distal dendrites. Spikelets initiated by distal excitation could function as prepotentials for full sodium spikes, in part depending on the level of proximal depolarization. Somatic depolarization by the electric field evoked full sodium spikes as well as low-threshold calcium spikes (LTSs). Calcium imaging revealed that the electrophysiologically identified LTS evoked from the soma was associated with calcium transients in the proximal and the distal dendrites. Our data suggest that the LTS in the soma/proximal dendrites plays a major role in boosting excitability, thus contributing to the initiation of sodium spiking in this compartment. The results furthermore suggest that the LTS and the sodium spikes may act independently or cooperatively to regulate dendritic calcium influx.


2003 ◽  
Vol 90 (2) ◽  
pp. 644-654 ◽  
Author(s):  
Brian Halabisky ◽  
Ben W. Strowbridge

Recurrent and lateral inhibition play a prominent role in patterning the odor-evoked discharges in mitral cells, the output neurons of the olfactory bulb. Inhibitory responses in this brain region are mediated through reciprocal synaptic connections made between the dendrites of mitral cells and GABAergic interneurons. Previous studies have demonstrated that N-methyl-d-aspartate (NMDA) receptors on interneurons play a critical role in eliciting GABA release at reciprocal dendrodendritic synapses. In acute olfactory bulb slices, these receptors are tonically blocked by extracellular Mg2+, and recurrent inhibition is disabled. In the present study, we examined the mechanisms by which this tonic blockade could be reversed. We demonstrate that near-coincident activation of an excitatory pathway to the proximal dendrites of GABAergic interneurons relieves the Mg2+ blockade of NMDA receptors at reciprocal dendrodendritic synapses and greatly facilitates recurrent inhibition onto mitral cells. Gating of recurrent and lateral inhibition in the presence of extracellular Mg2+ requires γ-frequency stimulation of glutamatergic axons in the granule cell layer. Long-range excitatory axon connections from mitral cells innervated by different subpopulations of olfactory receptor neurons may provide a gating input to granule cells, thereby facilitating the mitral cell lateral inhibition that contributes to odorant encoding.


Sign in / Sign up

Export Citation Format

Share Document