scholarly journals High-Frequency Hippocampal Oscillations Activated by Optogenetic Stimulation of Transplanted Human ESC-Derived Neurons

2012 ◽  
Vol 32 (45) ◽  
pp. 15837-15842 ◽  
Author(s):  
J. C. Pina-Crespo ◽  
M. Talantova ◽  
E.-G. Cho ◽  
W. Soussou ◽  
N. Dolatabadi ◽  
...  
2020 ◽  
Author(s):  
C.A. Villalobos ◽  
M.A. Basso

ABSTRACTIn contrast to predictions from the current model of basal ganglia (BG) function, we report here that increasing inhibition from the BG to the superior colliculus (SC) through the substantia nigra (nigra) using in vivo optogenetic activation of GABAergic terminals in mice, produces contralateral orienting movements. Orienting movements resulting from activation of inhibitory nigral terminals are unexpected because decreases and not increases, in nigral activity are generally associated with orienting movements. To determine how orienting movements may result from activation of inhibitory terminals, we performed a series of slice experiments and found that the same optogenetic stimulation of nigral terminals used in vivo, evoked post-inhibitory rebound depolarization and spiking in SC output neurons in vitro. Only high frequency (100Hz) stimulation evoked contralateral movements in vivo and triggered rebound spiking in vitro. The latency of orienting movements relative to the stimulation in vivo was similar to the latency of rebound spiking in vitro. Taken together, our results point toward a novel hypothesis that inhibition from the BG may play an active rather than passive role in the generation of orienting movements in mice.


2022 ◽  
Author(s):  
Leonardo M Cardozo ◽  
Blythe C Dillingham ◽  
Andre F Sousa ◽  
Westley Dang ◽  
Nicholas Job ◽  
...  

The nature and distribution of the synaptic changes that underlie memory are not well understood. We examined the synaptic plasticity behind context fear learning and found that conditioning produced potentiation of excitatory synapses specifically onto the basolateral amygdala neurons activated during learning. This synaptic potentiation lasted at least 7 days, and its disruption impaired memory recall. High frequency optogenetic stimulation of the CS and US-activated ensembles or biochemical induction of synaptic potentiation in US-responsive neurons alone was sufficient to produce a context fear association without prior associative training. These results suggest that plasticity of CS inputs onto US-responsive amygdala neurons is a necessary and sufficient step in forming context fear associations, and that context discrimination is determined by the CS-specific amygdala inputs activated during retrieval.


2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


Sign in / Sign up

Export Citation Format

Share Document