scholarly journals A Protein Synthesis-Dependent Mechanism Sustains Calcium-Permeable AMPA Receptor Transmission in Nucleus Accumbens Synapses during Withdrawal from Cocaine Self-Administration

2014 ◽  
Vol 34 (8) ◽  
pp. 3095-3100 ◽  
Author(s):  
A. F. Scheyer ◽  
M. E. Wolf ◽  
K. Y. Tseng
Author(s):  
Junshi Wang ◽  
King-Lun Li ◽  
Avani Shukla ◽  
Ania Beroun ◽  
Masago Ishikawa ◽  
...  

AbstractSynaptogenesis is essential in forming new neurocircuits during development, and this is mediated in part by astrocyte-released thrombospondins (TSPs) and activation of their neuronal receptor, α2δ-1. Here, we show that this developmental synaptogenic mechanism is utilized during cocaine experience to induce spinogenesis and the generation of AMPA receptor-silent glutamatergic synapses in the adult nucleus accumbens (NAc). Specifically, cocaine administration activates NAc astrocytes, and preventing this activation blocks cocaine-induced generation of silent synapses. Furthermore, knockout of TSP2, or pharmacological inhibition or viral-mediated knockdown of α2δ-1, prevents cocaine-induced generation of silent synapses. Moreover, disrupting TSP2-α2δ-1-mediated spinogenesis and silent synapse generation in the NAc occludes cue-induced cocaine seeking after withdrawal from cocaine self-administration and cue-induced reinstatement of cocaine seeking after drug extinction. These results establish that silent synapses are generated by an astrocyte-mediated synaptogenic mechanism in response to cocaine experience and embed critical cue-associated memory traces that promote cocaine relapse.


2013 ◽  
Vol 38 (9) ◽  
pp. 1789-1797 ◽  
Author(s):  
Anthony Purgianto ◽  
Andrew F Scheyer ◽  
Jessica A Loweth ◽  
Kerstin A Ford ◽  
Kuei Y Tseng ◽  
...  

Author(s):  
Zhanglei Dong ◽  
Bingwu Huang ◽  
Chenchen Jiang ◽  
Jiangfan Chen ◽  
Han Lin ◽  
...  

AbstractPropofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5–10.0 ng/site), MSX-3 (A2AR antagonist, 5.0–20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75–3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75–3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0–20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.


2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.


Author(s):  
James M. Kasper ◽  
Ashley E. Smith ◽  
Sierra N. Miller ◽  
Ara ◽  
William K. Russell ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. 9469-9474 ◽  
Author(s):  
Ethan M. Anderson ◽  
Anne Marie Wissman ◽  
Joyce Chemplanikal ◽  
Nicole Buzin ◽  
Daniel Guzman ◽  
...  

Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.


2016 ◽  
Vol 32 (6) ◽  
pp. 531-537 ◽  
Author(s):  
Benfu Wang ◽  
Xiaowei Yang ◽  
Anna Sun ◽  
Lanman Xu ◽  
Sicong Wang ◽  
...  

2011 ◽  
Vol 61 (7) ◽  
pp. 1141-1151 ◽  
Author(s):  
Carrie R. Ferrario ◽  
Jessica A. Loweth ◽  
Mike Milovanovic ◽  
Kerstin A. Ford ◽  
Gregorio L. Galiñanes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document