scholarly journals Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking

2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.

1989 ◽  
Vol 3 (2) ◽  
pp. 139-144 ◽  
Author(s):  
P. Pakarinen ◽  
I. Huhtaniemi

ABSTRACT Serum and pituitary LH and FSH, and their pituitary mRNA levels, were measured in neonatal male and female rats after gonadectomy and after gonadectomy with sex steroid replacement. The animals were gonadectomized on day 3 of life, and those given sex steroid replacement were implanted with silicone elastomer capsules containing testosterone for males and diethylstilboestrol for females. Shamoperated rats served as controls. The animals were killed 4 or 8 days later and the sera and pituitaries collected. Pituitary contents of mRNAs for the α subunit, FSH-β and LH-β were determined by blot hybridization using corresponding cDNAs. Distinct sex differences were found in the mRNA responses to gonadectomy and steroid replacement. In the males, gonadectomy increased all mRNA levels at 7 days of age. In the females, a rise on day 7 was detected only for FSH-β; the other mRNAs were increased on day 11 of age. The steroid replacements reversed all the post-gonadectomy increases of mRNAs in both sexes. Moreover, the common α and LH-β mRNAs of the male animals were consistently suppressed below control levels. The serum concentrations of gonadotrophins increased after gonadectomy on day 7 in the males but only on day 11 in the females. The steroid replacements also suppressed the post-gonadectomy increases in serum gonadotrophins, but only the serum concentration of FSH in the females was reduced below controls. Pituitary gonadotrophin concentrations were not affected by gonadectomy, but the steroids suppressed LH in the males and FSH in the females. It is concluded that the onset of negative-feedback regulation of gonadotrophin synthesis by gonads and/or gonadal steroids starts earlier in male rats, before 7 days of age. In female rats these responses appear between 7 and 11 days of age. Clear sex differences were observed in how gonadotrophin mRNAs and pituitary and serum hormone levels responded to gonadectomy and steroid replacement in the neonatal period. Some of the responses differed from those previously reported in adult animals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Annabelle Flores-Bonilla ◽  
Barbara De Oliveira ◽  
Andrea Silva-Gotay ◽  
Kyle W. Lucier ◽  
Heather N. Richardson

Abstract Background Incentives to promote drinking (“happy hour”) can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. Methods Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, “early sessions”) and then again at 10 h into the dark cycle (late phase of the dark cycle, “late sessions”) with an 8-h break between the two sessions in the home cage. Results Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). Conclusions This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Song ◽  
Fang Yuan ◽  
Xiaohong Li ◽  
Xipeng Ma ◽  
Xinmin Yin ◽  
...  

Abstract Background Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis. Methods Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS). Results Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis. Conclusions Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Gemma Sanguesa ◽  
Aline Meza ◽  
Anna Alcarraz ◽  
Cira Rubies ◽  
Lluis Mont ◽  
...  

Introduction: There is emerging evidence in men that sustained high-intensity training promotes an adverse cardiovascular remodeling, thereby increasing the risk of atrial fibrillation, ventricular arrhythmias and coronary calcification. Whether men and women are similarly affected by high intensity exercise-induced harm is unclear. Our aim was to study sex differences in a long-term endurance training rat model. Methods: Male and female Wistar rats were subjected to high intensity training for 16 weeks (INT, 60min 60cm/s, male n=20, female n=15). Sedentary rats (SED, male n=20, female n=18) were used as controls. At the end of the training period, rats had an electrocardiogram and echocardiography performed. Vascular fibrosis was assessed in descending aorta, left carotid, and intramyocardial arteries (IMA), right and left atria, and left ventricle (LV) histological samples. mRNA levels of cardiac hypertrophy, fibrosis, oxidative stress and inflammation genes were assessed in LV samples by Real-Time PCR. Results: INT male rats presented lower heart rate (382±9, 340±10, SED vs INT, p<0.01) and a longer QRS duration (18.8±0.6, 22.4±1.1, SED vs INT, p<0.01), while these were not modified in the INT female group. Echocardiography showed eccentric LV hypertrophy in both trained male and female rats. High intensity exercise induced fibrosis in the descending aorta and carotid in both males and females, but IMA were only affected in trained male rats. In the heart, exercise-induced atrial fibrosis similarly occurred in both trained male and female rats. No training-induced fibrosis was evident in the LV of both INT male and female rats. Regarding LV mRNA analysis, INT males showed a reduction of desmin, TTN and N2BA/N2B ratio, whereas INT females exhibited higher desmin mRNA levels and lower αMHC/βMHC ratio. Intense exercise did not increase LV mRNA levels of fibrosis, oxidative stress and inflammation markers neither in males nor in females. In comparison to males, females had lower LV myocardial fibrosis as well as lower fibrosis markers. Conclusions: Male and female rats exhibit qualitatively different cardiovascular remodeling after extreme exercise. Nevertheless, both sexes might develop exercise-induced adverse vascular and cardiac effects.


2021 ◽  
Author(s):  
Amy Chan ◽  
Alexis Willard ◽  
Sarah Mulloy ◽  
Noor Ibrahim ◽  
Allegra Sciaccotta ◽  
...  

This study investigated the potential therapeutic effects of the FDA-approved drug metformin on cue-induced reinstatement of cocaine seeking. Metformin (dimethyl-biguanide) is a first-line treatment for type II diabetes that, among other mechanisms, is involved in the activation of adenosine monophosphate activated protein kinase (AMPK). Cocaine self-administration and extinction is associated with decreased levels of phosphorylated AMPK within the nucleus accumbens core (NAcore). Previously it was shown that increasing AMPK activity in the NAcore decreased cue-induced reinstatement of cocaine seeking. Decreasing AMPK activity produced the opposite effect. The goal of the present study was to determine if metformin in the NAcore reduces cue-induced cocaine seeking in adult male and female Sprague Dawley rats. Rats were trained to self-administer cocaine followed by extinction prior to cue-induced reinstatement trials. Metformin microinjected in the NAcore attenuated cue-induced reinstatement in male and female rats. Importantly, metformin's effects on cocaine seeking were not due to a general depression of spontaneous locomotor activity. In female rats, metformin's effects did generalize to a reduction in cue-induced reinstatement of sucrose seeking. These data support a potential role for metformin as a pharmacotherapy for cocaine use disorder, but warrant caution given the potential for metformin's effects to generalize to a natural reward in female rats.


2013 ◽  
Vol 305 (8) ◽  
pp. F1099-F1104 ◽  
Author(s):  
Chunhua Jin ◽  
Joshua S. Speed ◽  
Kelly A. Hyndman ◽  
Paul M. O'Connor ◽  
David M. Pollock

The inner medullary collecting duct (IMCD) is the nephron segment with the highest production of endothelin-1 (ET-1) and the greatest expression of ET-1 receptors that function to adjust Na+ and water balance. We have reported that male rats have reduced natriuresis in response to direct intramedullary infusion of ET-1 compared with female rats. Our aim was to determine whether alterations of ET-1 receptor expression and downstream intracellular Ca2+ signaling within the IMCD could account for these sex differences. IMCDs from male and female rats were isolated for radioligand binding or microdissected for intracellular Ca2+ ([Ca2+]i) measurement by fluorescence imaging of fura-2 AM. IMCD from male and female rats had similar ETB expression (655 ± 201 vs. 567 ± 39 fmol/mg protein, respectively), whereas male rats had significantly higher ETA expression (436 ± 162 vs. 47 ± 29 fmol/mg protein, respectively; P < 0.05). The [Ca2+]i response to ET-1 was significantly greater in IMCDs from male compared with female rats (288 ± 52 vs. 118 ± 32 AUC, nM × 3 min, respectively; P < 0.05). In IMCDs from male rats, the [Ca2+]i response to ET-1 was significantly blunted by the ETA antagonist BQ-123 but not by the ETB antagonist BQ-788 (control: 137 ± 27; BQ-123: 53 ± 11; BQ-788: 84 ± 25 AUC, nM × 3 min; P < 0.05), consistent with greater ETA receptor function in male rats. These data demonstrate a sex difference in ETA receptor expression that results in differences in ET-1 Ca2+ signaling in IMCD. Since activation of ETA receptors is thought to oppose ETB receptor activation, enhanced ETA function in male rats could limit the natriuretic effects of ETB receptor activation.


2015 ◽  
Vol 46 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Takeshi Iwasa ◽  
Toshiya Matsuzaki ◽  
Munkhsaikhan Munkhzaya ◽  
Altankhuu Tungalagsuvd ◽  
Akira Kuwahara ◽  
...  

2018 ◽  
Author(s):  
Jacques D. Nguyen ◽  
K. M. Creehan ◽  
Tony M. Kerr ◽  
Michael A. Taffe

AbstractAdolescents are regularly exposed to Δ9-tetrahydrocannabinol (THC) via smoking, and, more recently, vaping, cannabis / extracts. Growing legalization of cannabis for medical and recreational purposes, combined with decreasing perceptions of harm, makes it increasingly important to determine the consequences of frequent adolescent exposure for motivated behavior and lasting tolerance in response to THC. Male and female rats inhaled THC vapor, or that from the propylene glycol (PG) vehicle, twice daily for 30 minutes from postnatal day (PND) 35-39 and PND 42-45 using an e-cigarette system. Thermoregulatory responses to vapor inhalation were assessed by radio-telemetry during adolescence and from PND 86-94; chow intake was assessed in adulthood. Blood samples were obtained from additional adolescent groups following initial THC inhalation and after four days of twice daily exposure. Additional groups exposed repeatedly to THC or PG during adolescence were evaluated for intravenous self-administration of oxycodone as adults. Female, not male, adolescents developed tolerance to the hypothermic effects of THC inhalation in the first week of repeated exposure despite similar plasma THC levels. Each sex exhibited tolerance to THC hypothermia in adulthood after repeated adolescent THC with THC greater potency exhibited in females. Repeated-THC male rats consumed more food than their PG treated control group, in the absence of a significant bodyweight difference. Adolescent THC did not alter oxycodone self-administration in either sex, but increased fentanyl self-administration in females. Repeated THC vapor inhalation in adolescent rats results in lasting consequences observable in adulthood.AbbreviationsPG, propylene glycol; THC, Δ9tetrahydrocannabinol;


2021 ◽  
Author(s):  
Xiaoying Tan ◽  
Elizabeth Neslund ◽  
Zheng-Ming Ding

Relapse is a defining feature of smoking and a significant challenge in cessation management. Elucidation of novel mechanisms underlying relapse may inform future treatments. Cotinine, the major metabolite of nicotine, has been shown to support intravenous self-administration in rats, suggesting it as one potential mechanism contributing to nicotine reinforcement. However, it remains unknown whether cotinine would induce relapse-like behaviors. The current study investigated relapse to cotinine seeking in two relapse models, the reinstatement of drug seeking and incubation of drug craving models. In the reinstatement model, rats were trained to self-administer cotinine, extinguished cotinine-associated responses, and underwent cue-, drug-, or stress-induced reinstatement. Conditioned cues associated with cotinine self-administration, cotinine (1-2 mg/kg), or the pharmacological stressor yohimbine (1.25-2.5 mg/kg) reinstated cotinine seeking. Female rats displayed more pronounced cue-induced, but not drug- or stress-induced reinstatement than male rats. In addition, an overall analysis revealed that female rats exhibited greater cotinine self-administration, but less extinction than male rats. In the incubation model, rats were trained to self-administer cotinine, and underwent forced withdrawal in home cages. Rats were tested for cue-induced cotinine seeking on both withdrawal day 1 and withdrawal day 18. Rats exhibited greater cotinine-seeking on withdrawal day 18 compared to withdrawal day 1, with no difference between male and female rats. These findings indicate that cotinine induces sex-dependent relapse to cotinine seeking in rats, suggesting that cotinine may be a novel mechanism contributing to relapse. These rat models are valuable preclinical tools for interrogation of neurobiological underpinnings of relapse to cotinine seeking.


2021 ◽  
pp. 026988112110192
Author(s):  
Samantha N Scott ◽  
Raul Garcia ◽  
Gregory L Powell ◽  
Sophia M Doyle ◽  
Brielle Ruscitti ◽  
...  

Background: The 5-HT1B receptor (5-HT1BR) agonist, CP94253, enhances cocaine intake during maintenance of self-administration (SA) but attenuates intake after 21 days of forced abstinence in male rats. Aims: We examined whether CP94253 attenuates cocaine intake in female rats after a period of abstinence, and if these attenuating effects persist or revert to enhancing cocaine intake during resumption (i.e. relapse) of daily cocaine SA. Methods: Male and female rats trained to lever press on a fixed ratio 5 schedule of cocaine reinforcement underwent ⩾21 days of forced abstinence. They were then tested for the effects of CP94253 (5.6 mg/kg, SC) or vehicle on cocaine SA. During the test session, rats had 1-h access to the training dose of cocaine (0.75 mg/kg, IV) followed by 1-h access to a lower cocaine dose (0.075 mg/kg, IV). Rats then resumed cocaine SA for 15 days to mimic relapse and were retested as done previously. Subsequently, rats underwent abstinence again (21–60 days) and were tested for CP94253 effects on locomotion and cue reactivity (i.e. responding for light/tone cues previously paired with cocaine infusions). Results: Regardless of sex, CP94253 decreased cocaine intake after abstinence and during resumption of SA and decreased cue reactivity while having no effect on locomotion. Conclusions: CP94253 decreases cocaine intake and cocaine seeking in both males and females even after resumption of cocaine SA. These findings suggest that the inhibitory effects of CP94253 observed after abstinence are long-lasting, and therefore, 5-HT1BR agonists may have clinical efficacy as anti-relapse medications for cocaine use disorders.


Sign in / Sign up

Export Citation Format

Share Document