scholarly journals Cytoplasmic Polyadenylation Element Binding Protein 1-Mediated mRNA Translation in Purkinje Neurons Is Required for Cerebellar Long-Term Depression and Motor Coordination

2007 ◽  
Vol 27 (24) ◽  
pp. 6400-6411 ◽  
Author(s):  
M. McEvoy ◽  
G. Cao ◽  
P. M. Llopis ◽  
M. Kundel ◽  
K. Jones ◽  
...  
2018 ◽  
Vol 5 (12) ◽  
pp. 180336
Author(s):  
Michele Sanguanini ◽  
Antonino Cattaneo

The regulation of mRNA translation at the level of the synapse is believed to be fundamental in memory and learning at the cellular level. The family of cytoplasmic polyadenylation element binding (CPEB) proteins emerged as an important RNA-binding protein family during development and in adult neurons. Drosophila Orb2 (homologue of mouse CPEB3 protein and of the neural isoform of Aplysia CPEB) has been found to be involved in the translation of plasticity-dependent mRNAs and has been associated with long-term memory. Orb2 protein presents two main isoforms, Orb2A and Orb2B, which form an activity-induced amyloid-like functional aggregate, thought to be the translation-inducing state of the RNA-binding protein. Here we present a first two-states continuous differential model for Orb2A–Orb2B aggregation. This model provides new working hypotheses for studying the role of prion-like CPEB proteins in long-term synaptic plasticity. Moreover, this model can be used as a first step to integrate translation- and protein aggregation-dependent phenomena in synaptic facilitation rules.


2019 ◽  
Vol 31 (3) ◽  
pp. 632
Author(s):  
Jeongwoo Kwon ◽  
Shuha Park ◽  
Min-Jung Seong ◽  
Inchul Choi ◽  
Nam-Hyung Kim

Cytoplasmic polyadenylation element binding protein (CPEB) is an RNA-binding protein that promotes elongation of poly(A) tails and regulates mRNA translation. CPEB depletion in mammary epithelium is known to disrupt tight-junction (TJ) assembly via mislocalisation of tight junction protein 1 (TJP1), but the role of CPEB in the biological functions associated with TJs has not yet been studied. The objective of this study was to investigate the roles of CPEB2 during porcine parthenote development. CPEB2 was detected in both the nuclei and apical cytoplasm at the 4- and 8-cell stages and was localised to cell–cell contact after the initiation of the morula stage. Its depletion led to retarded blastocyst formation caused by impaired TJ assembly. Moreover, transcription of TJ-associated genes, including TJP1, Coxsackie virus and adenovirus receptor (CXADR) and occludin (OCLN), was not affected, but the corresponding proteins were not properly localised at the apical cell membrane in morulae, suggesting that CPEB2 confers mRNA stability or determines subcellular localisation for translation. Remarkably reduced relative levels of TJP1 transcripts bearing the 3′-untranslated region were noted, indicating that CPEB2 mediates TJP1 mRNA stability. In conclusion, our findings demonstrate that because of its regulation of TJP1, CPEB2 is required for TJ assembly during porcine blastocyst development.


2016 ◽  
Vol 37 (8) ◽  
pp. 3053-3064 ◽  
Author(s):  
Nidia Quillinan ◽  
Guiying Deng ◽  
Kaori Shimizu ◽  
Ivelisse Cruz-Torres ◽  
Christian Schroeder ◽  
...  

Cardiac arrest and cardiopulmonary resuscitation (CA/CPR) produce brain ischemia that results in cognitive and motor coordination impairments subsequent to injury of vulnerable populations of neurons, including cerebellar Purkinje neurons. To determine the effects of CA/CPR on plasticity in the cerebellum, we used whole cell recordings from Purkinje neurons to examine long-term depression (LTD) at parallel fiber (PF) synapses. Acute slices were prepared from adult male mice subjected to 8 min cardiac arrest at 1, 7, and 30 days after resuscitation. Concurrent stimulation of PF and climbing fibers (CFs) resulted in robust LTD of PF-evoked excitatory postsynaptic currents (EPSCs) in controls. LTD was absent in recordings obtained from mice subjected to CA/CPR, with no change in EPSC amplitude from baseline at any time point tested. AMPA and mGluR-mediated responses at the PF were not altered by CA/CPR. In contrast, CF-evoked NMDA currents were reduced following CA/CPR, which could account for the loss of LTD observed. A loss of GluN1 protein was observed following CA/CPR that was surprisingly not associated with changes in mRNA expression. These data demonstrate sustained impairments in synaptic plasticity in Purkinje neurons that survive the initial injury and which likely contribute to motor coordination impairments observed after CA/CPR.


2019 ◽  
Vol 31 (2) ◽  
pp. 412 ◽  
Author(s):  
Jeongwoo Kwon ◽  
Shuha Park ◽  
Min-Jung Seong ◽  
Inchul Choi ◽  
Nam-Hyung Kim

Cytoplasmic polyadenylation element binding protein (CPEB) is an RNA-binding protein that promotes elongation of poly(A) tails and regulates mRNA translation. CPEB depletion in mammary epithelium is known to disrupt tight-junction (TJ) assembly via mislocalisation of tight junction protein 1 (TJP1), but the role of CPEB in the biological functions associated with TJs has not yet been studied. The objective of this study was to investigate the roles of CPEB2 during porcine parthenote development. CPEB2 was detected in both the nuclei and apical cytoplasm at the 4- and 8-cell stages and was localised to cell–cell contact after the initiation of the morula stage. Its depletion led to retarded blastocyst formation caused by impaired TJ assembly. Moreover, transcription of TJ-associated genes, including TJP1, Coxsackie virus and adenovirus receptor (CXADR) and occludin (OCLN), was not affected, but the corresponding proteins were not properly localised at the apical cell membrane in morulae, suggesting that CPEB2 confers mRNA stability or determines subcellular localisation for translation. Remarkably reduced relative levels of TJP1 transcripts bearing the 3′-untranslated region were noted, indicating that CPEB2 mediates TJP1 mRNA stability. In conclusion, our findings demonstrate that because of its regulation of TJP1, CPEB2 is required for TJ assembly during porcine blastocyst development.


Author(s):  
Lenzie Ford ◽  
Arun Asok ◽  
Arielle D. Tripp ◽  
Cameron Parro ◽  
Michelle Fitzpatrick ◽  
...  

SummaryBiomolecular condensates, membraneless organelles found throughout the cell, play critical roles in many aspects of cellular function. Ribonucleoprotein granules (RNPs), a type of biomolecular condensate found in neurons that are necessary for local protein synthesis and are involved in long-term potentiation (LTP). Several RNA-binding proteins present in RNPs are necessary for the synaptic plasticity involved in LTP and long-term memory. Most of these proteins possess low complexity motifs, allowing for increased promiscuity. We explore the role the low complexity motif plays for RNA binding protein cytoplasmic polyadenylation element binding protein 3 (CPEB3), a protein necessary for long-term memory persistence. We found that RNA binding and SUMOylation are necessary for CPEB3 localization to the P body, thereby having functional implications on translation. Here, we investigate the role of the low complexity motif of CPEB3 and find that it is necessary for P body localization and downstream targeting for local protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document