LOLA – a Performance Enhanced Humanoid Robot (LOLA – ein leistungsgesteigerter humanoider Roboter)

2007 ◽  
Vol 49 (4) ◽  
Author(s):  
Thomas Buschmann ◽  
Sebastian Lohmeier ◽  
Kolja Kühnlenz ◽  
Martin Buss ◽  
Heinz Ulbrich ◽  
...  

SummaryHumanoid robots are perfectly suited for service applications, since their human-like shape allows them to easily access environments designed for humans. This paper presents the performance enhanced humanoid robot LOLA. The goal of the project is to realize fast, human-like and vision-guided walking. LOLA's hardware is characterized by lightweight construction, modular, multi-sensory joint design with brushless motors and an electronics architecture using decentralized joint controllers. Real-time walking control is realized by a hierarchical trajectory generation and control system. Hardware and control are designed using a comprehensive multibody model of the robot. LOLA is equipped with a novel multi-focal vision system with four cameras and 6 degrees-of-freedom. Multifocal situation-specific gaze control provides high perception quality, flexible reaction, and accurate localization and navigation in large and weakly structured environments.

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Samer Alfayad ◽  
Fethi B. Ouezdou ◽  
Faycal Namoun

This paper deals with the design of a new class of hybrid mechanism dedicated to humanoid robotics application. Since the designing and control of humanoid robots are still open questions, we propose the use of a new class of mechanisms in order to face several challenges that are mainly the compactness and the high power to mass ratio. Human ankle and wrist joints can be considered more compact with the highest power capacity and the lowest weight. The very important role played by these joints during locomotion or manipulation tasks makes their design and control essential to achieve a robust full size humanoid robot. The analysis of all existing humanoid robots shows that classical solutions (serial or parallel) leading to bulky and heavy structures are usually used. To face these drawbacks and get a slender humanoid robot, a novel three degrees of freedom hybrid mechanism achieved with serial and parallel substructures with a minimal number of moving parts is proposed. This hybrid mechanism that is able to achieve pitch, yaw, and roll movements can be actuated either hydraulically or electrically. For the parallel submechanism, the power transmission is achieved, thanks to cables, which allow the alignment of actuators along the shin or the forearm main axes. Hence, the proposed solution fulfills the requirements induced by both geometrical, power transmission, and biomechanics (range of motion) constraints. All stages including kinematic modeling, mechanical design, and experimentation using the HYDROïD humanoid robot’s ankle mechanism are given in order to demonstrate the novelty and the efficiency of the proposed solution.


2006 ◽  
Vol 5-6 ◽  
pp. 529-540 ◽  
Author(s):  
Heinz Ulbrich ◽  
T. Buschmann ◽  
S. Lohmeier

This paper presents the performance enhanced humanoid robot LOLA which is currently being manufactured. Hardware design, controllers and simulation are based on ex- perience gained during the development of the robot JOHNNIE. The objective of the current research project is to realize a fast, human-like and autonomous walking motion. To enable an optimal design of the robot with respect to lightweight construction, motor and drive sizing, an appropriate simulation model is required. Dynamics simulation is a key tool to develop the hardware and control design properly. For hardware design and detailed dynamic analysis a comprehensive model including motor and gear dynamics is required, while for controller de- sign and stability analysis a simplified model for global system dynamics is sufficient. Both robots are characterized by a lightweight construction. In comparison to JOHNNIE, the new robot LOLA has a modular, multi-sensory joint design with brushless motors. Moreover, the previously purely central electronics architecture is replaced by a network of decentral joint controllers, sensor data acquisition and filtering units and a central PC. The fusion of motor, gear and sensors into a highly integrated mechatronic joint module has several advantages for the whole system, including high power density, good dynamic performance and reliability. Ad- ditional degrees of freedom are introduced in elbow, waist and toes. Linear actuators are used for the knee joints to achieve a better mass distribution in the legs.


Author(s):  
Hun-ok Lim ◽  
Atsuo Takanishi

This paper proposes the mechanism and control of the biped humanoid robots WABIAN-RIV and WL-16. WABIAN-RIV has 43 mechanical degrees of freedom (d.f.): 6 d.f. in each leg, 7 d.f. in each arm, 3 d.f. in each hand, 2 d.f. in each eye, 4 d.f. in the neck and 3 d.f. in the waist. Its height is about 1.89 m and its total weight is 127 kg. It has a vision system and a voice recognition system to mimic some of the capabilities of the human senses. WL-16 consists of a pelvis and two legs having six 1 d.f. active linear actuators. An aluminium chair is mounted on two sets of its telescopic poles. To reduce the large support forces during the support phase, a support torque reduction mechanism is developed, which is composed of two compression gas springs with different stiffness. For the stability of the robots, a compensatory motion control algorithm is developed. This control compensates for moments generated by the motion of the lower limbs, using the motion of the trunk and the waist that is obtained by the zero moment point concept and fast Fourier transform. WABIAN-RIV is able to walk forwards, backwards and sideways, dance, carry heavy goods and express emotion, etc. WL-16 can move forwards, backwards and sideways while carrying an adult weighing up to 60 kg.


Author(s):  
Jian Hong Mei ◽  
Mohd Rizal Arshad

In this chapter, the authors address main issues of Navigation, Guidance, and Control (NGC) and vision system of Autonomous Surface Vessels (ASV). These issues compose research problems and related research findings in recent years. Related research results are reviewed first; then the hardware and subsystem of ASVs is introduced. For the typical rudder-propeller, three degrees of freedom horizontal underactuated model is presented. Visual ASV is applied more and more in complex and unknown environment with increasing demand of obstacles avoidance. Two examples of visual applications are demonstrated. One is riverbank identification using color segmentation and Hough Transform; the other is bridge detection using optical flow.


2019 ◽  
Vol 886 ◽  
pp. 188-193 ◽  
Author(s):  
Ssu Ting Lin ◽  
Jun Hu ◽  
Chia Hung Shih ◽  
Chiou Jye Huang ◽  
Ping Huan Kuo

With the development of the concept of Industry 4.0, research relating to robots is being paid more and more attention, among which the humanoid robot is a very important research topic. The humanoid robot is a robot with a bipedal mechanism. Due to the physical mechanism, humanoid robots can maneuver more easily in complex terrains, such as going up and down the stairs. However, humanoid robots often fall from imbalance. Whether or not the robot can stand up on its own after a fall is a key research issue. However, the often used method of hand tuning to allow robots to stand on its own is very inefficient. In order to solve the above problems, this paper proposes an automatic learning system based on Particle Swarm Optimization (PSO). This system allows the robot to learn how to achieve the motion of rebalancing after a fall. To allow the robot to have the capability of object recognition, this paper also applies the Convolutional Neural Network (CNN) to let the robot perform image recognition and successfully distinguish between 10 types of objects. The effectiveness and feasibility of the motion learning algorithm and the CNN based image classification for vision system proposed in this paper has been confirmed in the experimental results.


2004 ◽  
Vol 16 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Kenji Kawashima ◽  
◽  
Takahiro Sasaki ◽  
Toshiyuki Miyata ◽  
Naohiro Nakamura ◽  
...  

After disasters, remote control of construction machinery is often required to ensure the safety of workers during excavation. However, only limited numbers of remote-controlled construction machinery exist, and they are typically larger than conventional machinery. After a disaster, the transportation of such machinery takes additional time and is often troublesome. Therefore, it would be desirable to develop a remote-control system that could easily be installed on ordinary construction machinery. A pneumatic humanoid robot arm is in the process of being developed. While considering the portability issue, a lightweight fiber knitted pneumatic artificial rubber muscle (PARM) was selected as the actuator for the arm. This arm can be installed on all construction machinery models, can be controlled remotely, and has been designed for easy installation and portability. In this research, construction machinery was retrofitted with a pneumatic robot that enables it to be operated remotely. This robot has 6 degrees of freedom and utilizes the fiber knitted PARM. Experiments were conducted to measure the static characteristics of the new PARM and to measure their performance in the remote control of construction machinery. Experimental results showed that the developed system is able to achieve handling two levers of machinery, one that controls back and forward movement and the other that controls the bucket. Experimental results showed that the developed system successfully operated construction machinery remotely.


Author(s):  
Indra Adji Sulistijono ◽  
◽  
Son Kuswadi ◽  
One Setiaji ◽  
Inzar Salfikar ◽  
...  

Instability is one of the major defects in humanoid robots. Recently, various methods on the stability and reliability of humanoid robots have been studied actively. We propose a new fuzzy-logic control scheme for vision systems that would enable a robot to search for and to kick a ball towards an opponent goal. In this paper, a stabilization algorithm is proposed using the balance condition of the robot, which is measured using accelerometer sensors during standing and walking, and turning movement are estimated from these data. From this information the robot selects the appropriate motion pattern effectively. In order to generate the appropriate reaction in various body of robot situations, a fuzzy algorithm is applied in finding the appropriate angle of the joint from the vision system. The performance of the proposed algorithm is verified by searching for a ball, walking, turning tap and ball kicking movement experiments using an 18-DOF humanoid robot, called EFuRIO.


2011 ◽  
Vol 403-408 ◽  
pp. 4769-4776
Author(s):  
Nitin Kumar ◽  
Suraj Prakash Sahu ◽  
Jay Prakash Maurya ◽  
G.C. Nandi ◽  
Pavan Chakraborty

This paper describes the non Verbal communication method for developing a gesture-based system using Mimesis model. The proposed method is applicable to any hand gesture represented by a multi-dimensional signal. The entire work concentrates mainly on hand gestures recognition. It develops a way to communicate between Humans and the Humanoid Robots through gestural medium. The Mimesis is the technique of performing human gestures through imitation, recognition and generation. Different Gestures are being converted into code words through the use of code book. These code words are then converted into Proto-Symbols, these proto symbol then forms basis for training of the Humanoid robot. The recognition part is performed through a “distance vector”, a novel algorithm developed by us which is a combination of Euclidean distance and K-nearest neighbor. The generation part is done through the use of WEBOTS which include use of Humanoid robot HOAP 2 having 25 degrees of freedom. All the process of training, recognition and generation are simulated through MATLAB.


Author(s):  
Bryce Lee ◽  
Coleman Knabe ◽  
Viktor Orekhov ◽  
Dennis Hong

For a humanoid robot to have the versatility of humans, it needs to have similar motion capabilities. This paper presents the design of the hip joint of the Tactical Hazardous Operations Robot (THOR), which was created to perform disaster response duties in human-structured environments. The lower body of THOR was designed to have a similar range of motion to the average human. To accommodate the large range of motion requirements of the hip, it was divided into a parallel-actuated universal joint and a linkage-driven pin joint. The yaw and roll degrees of freedom are driven cooperatively by a pair of parallel series elastic linear actuators to provide high joint torques and low leg inertia. In yaw, the left hip can produce a peak of 115.02 [Nm] of torque with a range of motion of −20° to 45°. In roll, it can produce a peak of 174.72 [Nm] of torque with a range of motion of −30° to 45°. The pitch degree of freedom uses a Hoeken’s linkage mechanism to produce 100 [Nm] of torque with a range of motion of −120° to 30°.


Sign in / Sign up

Export Citation Format

Share Document