Probing Ethanol-Induced Phospholipid Phase Transitions by the Polarity Sensitive Fluorescence Probes Prodan and Patman

Author(s):  
R. Hutterer ◽  
M. Hof

The emission behaviour of the two polarity sensitive probes Prodan and Patman in phospholipid vesicles was studied as a function of the concentration of ethanol. Comparing the spectral shifts in both the symmetric lipid 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) showing a phase transition from a normal to a fully interdigitated gel phase and the strongly asymmetric lipid 1-stearoyl-2-lauroyl-sn-glycero-3-phosphatidylcholine (C(18):C(12)-PC) favouring a mixed interdigitated gel phase we show that the huge red shifts of Prodan in presence of higher ethanol concentrations cannot be easily attributed to a specific lipid phase transition. Rather, probe relocation and a pronounced increase in solvent relaxation (SR) as monitored by time-resolved emission spectra (TRES) in presence of ethanol contribute to the large shifts observable in both lipid systems in case of Prodan. While Patman exhibits a red shift caused by increased SR due to the ethanol induced formation of a fully interdigitated phase in DPPC, hardly any shift occurs in C(18):C(12)-PC, which is supposed not to undergo an ethanol-induced phase transition.

Author(s):  
Shogo Taguchi ◽  
Keishi Suga ◽  
Keita Hayashi ◽  
Yukihiro Okamoto ◽  
Hidemi Nakamura ◽  
...  

Self-assembly membranes, composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), were characterized at the total lipid concentration below 20 mM. The sizes of the assemblies varied depending on the molar ratio of DMPC and DHPC (q = [DMPC]/[DHPC]). The small assemblies with diameter of ca. 10 nm were formed at q ≤ 2.0 at 20 ºC (below phase transition temperature of DMPC). The physicochemical membrane properties were then studied using fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-N,N-dimethyl-2-naphthylamine, upon the dilution. DHPC micelle showed a higher membrane fluidity, while the DMPC/DHPC membranes at q ≥ 0.5 showed lower membrane fluidities as well as DMPC vesicle in gel (ordered) phase. Upon dilution, the ordered membrane properties were maintained while the solution turbidities increased, implying the morphological change of the self-assembly, bicelle to the vesicle in gel phase. Based on the obtained results, a phase diagram of DMPC/DHPC binary system (at 20 ºC) is described: (i) the bicelle suspension is transparent and the membrane is in ordered state, (ii) the micelle suspension is transparent and the membrane is in disordered state, (iii) the vesicle suspension is turbid and the membrane is in ordered state.


2016 ◽  
Author(s):  
Mariana Amaro ◽  
Francesco Reina ◽  
Martin Hof ◽  
Christian Eggeling ◽  
Erdinc Sezgin

AbstractLipid packing is a crucial feature of cellular membranes. Quantitative analysis of membrane lipid packing can be achieved using polarity sensitive probes whose emission spectrum depends on the lipid packing. However, detailed insight into the exact mechanism that causes the spectral shift is essential to interpret the data correctly. Here, we analysed frequently used polarity sensitive probes, Laurdan and di-4-ANEPPDHQ, to test whether the underlying physical mechanisms of their spectral shift is the same, thus whether they report on the same physico-chemical properties of the cell membrane. Their steady-state spectra as well as time-resolved emission spectra in solvents and model membranes showed that they probe different properties of the lipid membrane. Our findings are important for the application of these dyes in cell biology.


Author(s):  
Dorota Bonarska-Kujawa ◽  
Hanna Pruchnik ◽  
Halina Kleszczyńska

AbstractAnthocyanins are one of the main flavonoid groups. They are responsible for, e.g., the color of plants and have antioxidant features and a wide spectrum of medical activity. The subject of the study was the following compounds that belong to the anthocyanins and which can be found, e.g., in strawberries and chokeberries: callistephin chloride (pelargonidin-3-O-glucoside chloride) and ideain chloride (cyanidin-3-O-galactoside chloride). The aim of the study was to determine the compounds’ antioxidant activity towards the erythrocyte membrane and changes incurred by the tested anthocyanins in the lipid phase of the erythrocyte membrane, in liposomes composed of erythrocyte lipids and in DPPC, DPPC/cholesterol and egg lecithin liposomes. In particular, we studied the effect of the two selected anthocyanins on red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC and DPPC/cholesterol liposomes. Fluorimetry with the Laurdan and Prodan probes indicated increased packing density in the hydrophilic phase of the membrane in the presence of anthocyanins. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The compounds slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The study has shown that both anthocyanins are incorporated into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The investigation proved that the compounds penetrate only the outer part of the external lipid layer of liposomes composed of erythrocyte lipids, DPPC, DPPC/cholesterol and egg lecithin lipids, changing its packing order. Fluorimetry studies with DPH-PA proved that the tested anthocyanins are very effective antioxidants. The antioxidant activity of the compounds was comparable with the activity of Trolox®.


2004 ◽  
Vol 114 ◽  
pp. 99-101
Author(s):  
L. Guérin ◽  
E. Collet ◽  
M. Buron-Le Cointe ◽  
M.-H. Lemée-Cailleau ◽  
H. Cailleau ◽  
...  

1984 ◽  
Vol 62 (11) ◽  
pp. 1134-1150 ◽  
Author(s):  
P. M. Macdonald ◽  
B. D. Sykes ◽  
R. N. McElhaney

The orientational order parameters of monofluoropalmitic acids biosynthetically incorporated into membranes of Acholeplasma laidlawii B in the presence of a large excess of a variety of structurally diverse fatty acids have been determined via 19F nuclear magnetic resonance (19F NMR) spectroscopy. It is demonstrated that these monofluoropalmitic acids are relatively nonperturbing membrane probes based upon physical (differential scanning calorimetry), biochemical (membrane lipid analysis), and biological (growth studies) criteria. 19F NMR is shown to convey the same qualitative and quantitative picture of membrane lipid order provided by 2H-NMR techniques and to be sensitive to the structural characteristics of the membrane fatty acyl chains, as well as to the lipid phase transition. Representatives of each naturally occurring class of fatty acyl chain structures, including straight-chain saturated, methyl-branched, monounsaturated, and alicyclic-ring-substituted fatty acids, were studied and the 19F-NMR order parameters were correlated with the lipid phase transitions (determined calorimetrically). The lipid phase transition was the prime determinant of overall orientational order regardless of fatty acid structure. Effects upon orientational order attributable to specific structural substituents were discernible, but were secondary to the effects of the lipid phase transition. In the gel state, relative overall order was directly proportional to the temperature of the particular lipid phase transition. Not only the overall order, but also the order profile across the membrane was sensitive to the presence of particular structural substituents. In particular, in the gel state specific fatty acyl structures demonstrated a characteristic disordering effect in the membrane order profile. These various observations can be merged to provide a unified picture of the manner in which fatty acyl chain chemistry modulates the physical state of membrane lipids.


2019 ◽  
Author(s):  
Yunjiang Zhang ◽  
Olivier Favez ◽  
Jean-Eudes Petit ◽  
Francesco Canonaco ◽  
Francois Truong ◽  
...  

Abstract. Organic aerosol (OA) particles are recognized as key factors influencing air quality and climate change. However, highly-time resolved year-round characterizations of their composition and sources in ambient air are still very limited due to challenging continuous observations. Here, we present an analysis of long-term variability of submicron OA using the combination of Aerosol Chemical Speciation Monitor (ACSM) and multi-wavelength aethalometer from November 2011 to March 2018 at a background site of the Paris region (France). Source apportionment of OA was achieved via partially constrained positive matrix factorization (PMF) using the multilinear engine (ME-2). Two primary OA (POA) and two oxygenated OA (OOA) factors were identified and quantified over the entire studied period. POA factors were designated as hydrocarbon-like OA (HOA) and biomass burning OA (BBOA). The latter factor presented a significant seasonality with higher concentrations in winter with significant monthly contributions to OA (18–33 %) due to enhanced residential wood burning emissions. HOA mainly originated from traffic emissions but was also influenced by biomass burning in cold periods. OOA factors were distinguished between their less- and more-oxidized fractions (LO-OOA and MO-OOA, respectively). These factors presented distinct seasonal patterns, associated with different atmospheric formation pathways. A pronounced increase of LO-OOA concentrations and contributions (50–66 %) was observed in summer, which may be mainly explained by secondary OA (SOA) formation processes involving biogenic gaseous precursors. Conversely high concentrations and OA contributions (32–62 %) of MO-OOA during winter and spring seasons were partly associated with anthropogenic emissions and/or long-range transport from northeastern Europe. The contribution of the different OA factors as a function of OA mass loading highlighted the dominant roles of POA during pollution episodes in fall and winter, and of SOA for highest springtime and summertime OA concentrations. Finally, long-term trend analyses indicated a decreasing feature (of about 200 ng m−3 yr−1) for MO-OOA, very limited or insignificant decreasing trends for primary anthropogenic carbonaceous aerosols (BBOA and HOA, along with the fossil fuel and biomass burning black carbon components), and no trend for LO-OOA over the 6+-year investigated period.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 1173-1181 ◽  
Author(s):  
Narra Vamsi Krishna ◽  
Puliparambil Thilakan Anusha ◽  
S. Venugopal Rao ◽  
L. Giribabu

Zinc phthalocyanine possessing triphenylamine at its peripheral position has been synthesized and its optical, emission, electrochemical and third-order nonlinear optical (NLO) properties were investigated. Soret band was broadened due to the presence of triphenylamine moiety. Electrochemical properties indicated that both oxidation and reduction processes were ring centered. Emission spectra were recorded in different solvents and the fluorescence yields obtained were in the range of 0.02–0.17 while the time-resolved fluorescence data revealed radiative lifetimes of typically few ns. Third-order NLO properties of this molecule have been examined using the Z-scan technique with picosecond (ps) and femtoseocnd (fs) pulses. Closed and open aperture Z-scan data were recorded with 2 ps/1 50 fs laser pulses at a wavelength of 800 nm and NLO coefficients were extracted from both the data. Our data clearly suggests the potential of this molecule for photonics applications.


2006 ◽  
Vol 30 (2) ◽  
pp. 175-182 ◽  
Author(s):  
R KELLERMAYER ◽  
A ZSOMBOK ◽  
T AUER ◽  
F GALLYAS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document