scholarly journals Planting depth management increases early growth, aboveground biomass, and carbon storage of Eucalyptus pellita at Ultisols in South Sumatra

2020 ◽  
Vol 7 (4) ◽  
pp. 2253-2261
Author(s):  
Pandu Yudha Adi Putra Wirabuana ◽  
Ronggo Sadono ◽  
Sergian Juniarso
2020 ◽  
Vol 6 (2) ◽  
pp. 234-238
Author(s):  
Yahya Ahmad Zuhaidi ◽  
Hassan Nor Hasnida ◽  
Loon Ng Tong ◽  
Heng Lai Hong ◽  
Zorkarnain Fauzeyana Ain

Author(s):  
Penprapa Phetcharaburanin ◽  
◽  
Nittaya Chakkamrun ◽  
Pimpisa Kulninworpaeng ◽  
◽  
...  

2010 ◽  
Vol 25 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Daniel Tinker ◽  
Gail K. Stakes ◽  
Richard M. Arcano

Abstract Temperate forest ecosystems continue to play an important role in the global carbon cycle, and the ability to accurately quantify carbon storage and allocation remains a critical tool for managers and researchers. This study was aimed at developing new allometric equations for predicting above- and belowground biomass of both mature trees and saplings of ponderosa pine trees in the Black Hills region of the western United States and at evaluating thinning effects on biomass pools and aboveground productivity. Study sites included three stands that had been commercially thinned and one unmanaged stand. Nine allometric equations were developed for mature trees, and six equations were developed for saplings; all models exhibited strong predictive power. The unmanaged stand contained more than twice as much total aboveground biomass as any of the thinned stands. Aboveground biomass allocation among tree compartments was similar among the three older stands but quite different from the young, even-aged stand. Stand-level aboveground net primary production was higher in the unmanaged and intensively managed stands, yet tree-level annual productivity was much lower in the unmanaged stands than in any of the managed forests, suggesting that thinning of some forest stands may increase their ability to sequester and store carbon. Our data also suggest that different management approaches did not have the same effect on carbon allocation as they did on total carbon storage capacity, but rather, stand age was the most important factor in predicting carbon allocation within individual trees and stands. Identification of the relationships between stand structure and forest management practices may help identify various management strategies that maximize rates of carbon storage in ponderosa pine forests.


1987 ◽  
Vol 17 (7) ◽  
pp. 722-730 ◽  
Author(s):  
Miguel A. Espinosa Bancalari ◽  
David A. Perry

Total biomass increments were determined for three adjacent 22-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) plantations in the Oregon Coast Range that had widely different early growth rates. Estimated total aboveground biomass of the stands, designated slow, intermediate, and fast, was 98.7, 148.7, and 203.7 Mg•ha−1, respectively; estimated mean biomass increment in the 5 years previous to sampling was 8.9, 12.6, and 12.3 Mg•ha−1•year−1. The slow stand had a greater proportion of aboveground biomass in branches and a smaller proportion in stem wood than the intermediate and fast stands. Differences in biomass increment were primarily due to stem rather than crown growth. Total below ground biomass was highest in the fast stand, the difference being due to roots >5 mm in diameter; weight of roots <5 mm was greater in the slow and intermediate stands. Roots >5 mm comprised about 77% of the total root system in those stands and 90% in the fast stand. Increment of roots >5 mm was 2.2, 2.5, and 3.0 Mg•ha−1•year−1 in the slow, intermediate, and fast stands. The ratio of productivity to total leaf nitrogen suggests that nitrogen is a principal limiting resource in the intermediate stand. The fast stand, with a leaf area index 50% greater than the others, is probably limited by light. The slow stand has anaerobic soils during at least part of the year, which may restrict rooting depth and thereby induce water stress during summer drought.


2014 ◽  
Vol 41 (2) ◽  
pp. 215 ◽  
Author(s):  
Jiayin Pang ◽  
Jairo A. Palta ◽  
Gregory J. Rebetzke ◽  
Stephen P. Milroy

Genotypic differences in early growth and nitrogen (N) uptake among 24 wheat (Triticum aestivum L.) genotypes were assessed in a field trial. At late tillering, large genetic variation was observed for shoot biomass (23–56 g m–2 ground area) and N uptake (1.1–1.8 g m–2 ground area). A strong correlation between aboveground biomass and N uptake was observed. Variation around this relationship was also found, with some genotypes having similar N uptake but large differences in aboveground biomass. A controlled environment experiment was conducted to investigate the underlying mechanisms for this variation in aboveground biomass using three vigorous genotypes (38–19, 92–11 and CV97) and a non-vigorous commercial cultivar (Janz). Vigorous genotypes had lower specific leaf N in the youngest fully expanded leaf than Janz. However, there was no difference in chlorophyll content, maximum Rubisco activity or the rate of electron transport per unit area. This suggests that Janz invested more N in non-photosynthetic components than the vigorous lines, which could explain the higher photosynthetic N use efficiency of the vigorous genotypes. The results suggest that the utilisation of wheat genotypes with high early vigour could improve the efficiency of N use for biomass production in addition to improving N uptake during early growth.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 987 ◽  
Author(s):  
Nie ◽  
Wang ◽  
Yang ◽  
Zhou

Litter is an important component of terrestrial ecosystems and plays a significant role in carbon cycles. Quantifying regional-scale patterns of litter standing crop distribution will improve our understanding of the mechanisms of the terrestrial carbon cycle, and thus enable accurate predictions of the responses of the terrestrial carbon cycle to future climate change. In this study, we aimed to estimate the storage and climatic controlling factors of litter standing crop carbon in the Tibetan Plateau shrublands. We investigated litter standing crop carbon storage and its controlling factors, using a litter survey at 65 shrublands sites across the Tibetan Plateau from 2011–2013. Ordinary least squares regression analyses were conducted to estimate the relationships between litter standing crop carbon, longitude, and latitude. Multiple linear regressions were used to evaluate relationships among litter standing crop carbon, mean annual temperature (MAT), mean annual precipitation (MAP), and aboveground biomass. The litter standing crop carbon storage was 10.93 Tg C, 7.40 Tg C, and 3.53 Tg C in desert shrublands and alpine shrublands, respectively. Litter standing crop carbon decreased with longitude, and was stable with increasing latitude. Most (80%) of the litter standing crop was stored in branches, with only 20% stored in foliage in the shrublands on the Tibetan Plateau. The conversion coefficient was 0.44 for litter standing crop to litter standing crop carbon, and 0.39 and 0.45 for foliage and branch litter standing crop to foliage and branch litter standing crop carbon, respectively. Aboveground biomass can accelerate more inputs of litter and has a positive effect on litter standing crop carbon. MAT had a positive effect on litter standing crop carbon due to stimulating more input of aboveground biomass. However, MAP had a negative relationship with litter standing crop carbon by enhancing litter decomposition.


Sign in / Sign up

Export Citation Format

Share Document