Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth

2014 ◽  
Vol 41 (2) ◽  
pp. 215 ◽  
Author(s):  
Jiayin Pang ◽  
Jairo A. Palta ◽  
Gregory J. Rebetzke ◽  
Stephen P. Milroy

Genotypic differences in early growth and nitrogen (N) uptake among 24 wheat (Triticum aestivum L.) genotypes were assessed in a field trial. At late tillering, large genetic variation was observed for shoot biomass (23–56 g m–2 ground area) and N uptake (1.1–1.8 g m–2 ground area). A strong correlation between aboveground biomass and N uptake was observed. Variation around this relationship was also found, with some genotypes having similar N uptake but large differences in aboveground biomass. A controlled environment experiment was conducted to investigate the underlying mechanisms for this variation in aboveground biomass using three vigorous genotypes (38–19, 92–11 and CV97) and a non-vigorous commercial cultivar (Janz). Vigorous genotypes had lower specific leaf N in the youngest fully expanded leaf than Janz. However, there was no difference in chlorophyll content, maximum Rubisco activity or the rate of electron transport per unit area. This suggests that Janz invested more N in non-photosynthetic components than the vigorous lines, which could explain the higher photosynthetic N use efficiency of the vigorous genotypes. The results suggest that the utilisation of wheat genotypes with high early vigour could improve the efficiency of N use for biomass production in addition to improving N uptake during early growth.

1992 ◽  
Vol 72 (1) ◽  
pp. 235-241 ◽  
Author(s):  
L. E. Gauer ◽  
C. A. Grant ◽  
L. D. Bailey ◽  
D. T. Gehl

The effects of nitrogen fertilization on protein content, N uptake and N use efficiency of grain for six spring wheat cultivars were evaluated over a N application range of 0–200 kg ha−1, under two moisture supply levels, on Black Chernozemic soils in Manitoba. Moisture supply influenced protein content, protein yield, and grain N use efficiency (NUE) of applied fertilizer. Increased moisture supply lowered protein content and increased protein yield and NUE. Increasing N level increased protein, N uptake and decreased NUE, but effects depended on moisture supply. Cultivar differences occurred, especially at the higher moisture level.Key words: Protein, Triticum aestivum L., nitrogen uptake, nitrogen use efficiency, moisture


2011 ◽  
Vol 62 (6) ◽  
pp. 504 ◽  
Author(s):  
R. F. Wang ◽  
D. G. An ◽  
C. S. Hu ◽  
L. H. Li ◽  
Y. M. Zhang ◽  
...  

Wheat (Triticum aestivum L.) cultivars with improved nitrogen-use efficiency (NUE) under low and medium N conditions will help to minimise production costs and nitrate-N contamination. The study was conducted to determine the NUE diversities of winter wheat genotypes, and to evaluate the possible physiological mechanisms contributing to these differences. A set of 12 winter wheat genotypes, including S4185 as control genotype, were grown at high N (applied with 180 kg N/ha as urea) and low N (with no N fertiliser, N-deficient) plots in 2005–06 and 2007–08 growing seasons (i.e. four environments). ANOVA showed significant differences among genotypes for all traits measured. Among genotypes, XJ19-1 had significantly higher NUE and N uptake efficiency (NUpE) than S4185 at the two N levels in the 2 years (P < 0.05). KN9204 had significantly higher NUE in the four environments and higher NUpE in three out of four environments than S4185 (P < 0.05). WR9603 and XJ138-1 had higher NUE and NUpE than S4185 in two or three out of four environments (P < 0.05). XJ19-1, KN9204, WR9603 and XJ138-1 also showed higher grain yield (GY) and aboveground dry matter (DM) than S4185 in at least two environments (P < 0.05). KN9204 were 45.7 and 23.1% higher in root dry weight (RDW) of the top 40-cm soil profile compared with J411 at high N and low N plots, respectively (P < 0.05). In addition, there was a highly positive correlation between RDW and grain N yield (GNY) of KN9204 and J411 (P < 0.01). Closely positive correlation between NUE and GY, DM, GNY and NUpE at both N levels in the 2 years (P < 0.01), and between N utilisation efficiency (NUtE) and NUE only at high N plot (P < 0.05) were found. Our results indicated that NUpE was the important factor of NUE under low N conditions, and both NUpE and NUtE were the most important NUE components under high N conditions.


Author(s):  
Chen Erying ◽  
Qin Ling ◽  
Yang Yanbing ◽  
Zhang Huawen ◽  
Wang Hailian ◽  
...  

Abstract: The objective of this work was to identify the genetic variation of foxtail millet (Setaria italica) cultivars, from three ecogeographic origins in China, regarding the uptake and utilization of N by the genotypes at the seedling stage, aiming at the genetic improvement of this crop. Seedlings of 79 cultivars were fertilized with a nutrient solution, on a sand substrate, and evaluated under low-N (LN, 0.2 mmol L-1) and high-N (HN, 6.0 mmol L-1) concentrations. A large variation was observed between cultivars, among the three ecogeographic regions, for shoot biomass, shoot N content and concentration, and N use efficiency (NUE), uptake efficiency (NupE), and utilization efficiency (NutE), especially under HN conditions. Cultivars of Northwest China showed the highest variation for shoot biomass, N content, NUE, and NupE. A strong positive correlation was observed between NUE and NupE, and NUE and NutE, but there was no correlation between NupE and NutE. NupE accounted for 77.6% of the total variation of NUE, and NutE for the rest. The uptake and utilization of N show a large variation among the foxtail millet cultivars at the seedling stage, and the variation of N uptake contributes more than that of N utilization to the variation of N use efficiency.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 515
Author(s):  
Ying Ouyang ◽  
Gary Feng ◽  
Heidi Renninger ◽  
Theodor D. Leininger ◽  
Prem Parajuli ◽  
...  

Eucalyptus is one of the fastest growing hardwoods for bioenergy production. Currently, few modeling tools exist to simultaneously estimate soil hydrological processes, nitrogen (N) uptake, and biomass production in a eucalyptus plantation. In this study, a STELLA (Structural Thinking and Experiential Learning Laboratory with Animation)-based model was developed to meet this need. After the model calibration and validation, a simulation scenario was developed to assess eucalyptus (E. grandis × urophylla) annual net primary production (ANPP), woody biomass production (WBP), water use efficiency (WUE), and N use efficiency (NUE) for a simulation period of 20 years. Simulation results showed that a typical annual variation pattern was predicted for water use, N uptake, and ANPP, increasing from spring to fall and decreasing from fall to the following winter. Overall, the average NUE during the growth stage was 700 kg/kg. To produce 1000 kg eucalyptus biomass, it required 114.84 m3 of water and 0.92 kg of N. This study suggests that the STELLA-based model is a useful tool to estimate ANPP, WBP, WUE, and NUE in a eucalyptus plantation.


2020 ◽  
Author(s):  
Jie Wu ◽  
Zi-Sheng Zhang ◽  
Jing-Qiu Xia ◽  
Alamin Alfatih ◽  
Ying Song ◽  
...  

AbstractNitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavor in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the NIN-like protein OsNLP4 significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signaling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 is a master regulator of NUE in rice and sheds light on crop NUE improvement.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Peter Omara ◽  
Lawrence Aula ◽  
Fikayo B. Oyebiyi ◽  
Elizabeth M. Eickhoff ◽  
Jonathan Carpenter ◽  
...  

Biochar (B) has shown promise in improving crop productivity. However, its interaction with inorganic nitrogen (N) in temperate soils is not well-studied. The objective of this paper was to compare the effect of fertilizer N-biochar-combinations (NBC) and N fertilizer (NF) on maize (Zea mays L.) grain yield, N uptake, and N use efficiency (NUE). Trials were conducted in 2018 and 2019 at Efaw and Lake Carl Blackwell (LCB) in Oklahoma, USA. A randomized complete block design with three replications and ten treatments consisting of 50, 100, and 150 kg N ha−1 and 5, 10, and 15 Mg B ha−1 was used. At LCB, yield, N uptake, and NUE under NBC increased by 25%, 28%, and 46%, respectively compared to NF. At Efaw, yield, N uptake, and NUE decreased under NBC by 5%, 7%, and 19%, respectively, compared to NF. Generally, results showed a significant response to NBC at ≥10 Mg B ha−1. While results were inconsistent across locations, the significant response to NBC was evident at LCB with sandy loam soil but not Efaw with silty clay loam. Biochar application with inorganic N could improve N use and the yield of maize cultivated on sandy soils with poor physical and chemical properties.


2020 ◽  
Vol 21 (5) ◽  
pp. 1824
Author(s):  
Yubin Wang ◽  
Qingqing Yao ◽  
Yushi Zhang ◽  
Yuexia Zhang ◽  
Jiapeng Xing ◽  
...  

Modified gibberellin (GA) signaling leads to semi-dwarfism with low nitrogen (N) use efficiency (NUE) in crops. An understanding of GA-mediated N uptake is essential for the development of crops with improved NUE. The function of GA in modulating N uptake capacity and nitrate (NO3−) transporters (NRTs) was analyzed in the GA synthesis-deficient mutant zmga3ox grown under low (LN) and sufficient (SN) N conditions. LN significantly suppressed the production of GA1, GA3, and GA4, and the zmga3ox plants showed more sensitivity in shoots as well as LN stress. Moreover, the higher anthocyanin accumulation and the decrease of chlorophyll content were also recorded. The net NO3− fluxes and 15N content were decreased in zmga3ox plants under both LN and SN conditions. Exogenous GA3 could restore the NO3− uptake in zmga3ox plants, but uniconazole repressed NO3− uptake. Moreover, the transcript levels of ZmNRT2.1/2.2 were downregulated in zmga3ox plants, while the GA3 application enhanced the expression level. Furthermore, the RNA-seq analyses identified several transcription factors that are involved in the GA-mediated transcriptional operation of NRTs related genes. These findings revealed that GAs influenced N uptake involved in the transcriptional regulation of NRTs and physiological responses in maize responding to nitrogen supply.


2006 ◽  
Vol 290 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
Zhenan Hou ◽  
Pinfang Li ◽  
Baoguo Li ◽  
Jiang Gong ◽  
Yanna Wang

2008 ◽  
Vol 8 ◽  
pp. 394-399 ◽  
Author(s):  
Osumanu H. Ahmed ◽  
Aminuddin Hussin ◽  
Husni M. H. Ahmad ◽  
Anuar A. Rahim ◽  
Nik Muhamad Abd. Majid

Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea.


2015 ◽  
Vol 42 (12) ◽  
pp. 1179 ◽  
Author(s):  
Jiayin Pang ◽  
Stephen P. Milroy ◽  
Gregory J. Rebetzke ◽  
Jairo A. Palta

Shoot and root system size influences N uptake in wheat (Triticum aestivum L.). Previously, we showed that four wheat genotypes with different biomass had similar N uptake at tillering. In the present study, we determined whether the similarity in N uptake in these genotypes was associated with genotypic differences in the affinity of the root system for NO3– uptake. Kinetic parameters of NO3– uptake were measured in hydroponic seedlings of vigorous and nonvigorous early growth wheat genotypes by exposing them to solutions with differing concentrations of K15NO3 for 15 min. In the low concentration range, the high-affinity transport system of the nonvigorous cultivar Janz showed a higher maximum influx rate than the three vigorous lines and a higher affinity than two of the three vigorous lines. At high NO3– concentrations, where the low-affinity transport system was functional, the responsiveness of NO3– uptake to external concentrations was greater in Janz than in the vigorous lines. Both the high- and low-affinity transport systems were inducible. The genotypic variation in the kinetic parameters of NO3– uptake was large enough to offset differences in morphological traits and should be considered in efforts to improve N uptake. In a field trial, the growth and N uptake performance of the four wheat genotypes was investigated over the winter–spring growing season (June–November of 2010). The field trial showed that although early N uptake was disproportionately large relative to biomass accumulation, the differences in uptake at tillering can be changed by subsequent patterns of uptake.


Sign in / Sign up

Export Citation Format

Share Document