scholarly journals SRSF protein kinase 1 modulates RAN translation and suppresses CGG repeat toxicity

Author(s):  
Indranil Malik ◽  
Yi‐Ju Tseng ◽  
Shannon E Wright ◽  
Kristina Zheng ◽  
Prithika Ramaiyer ◽  
...  
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
X P Nguyen ◽  
B Messmer ◽  
J E Dietrich ◽  
K Hinderhofer ◽  
T Strowitzki ◽  
...  

Abstract Study question Does repeat-associated non-AUG (RAN) translation lead to accumulation of polyglycine- containing protein (FMRpolyG) in human lymphocytes and mural granulosa cells of FMR1 premutation carriers? Summary answer Lymphocytes and granulosa cells from FMR1 premutation carriers contain intracellular inclusions that stain positive for both FMRpolyG and ubiquitin. What is known already: Fragile-X-associated-Primary-Ovarian-Insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism associated with the expansion of CGG-repeats in the 5’UTR of FMR1, called premutation (PM) (n: 55–200). Approximately 20% of women carrying a FMR1-premutation (PM) allele develop FXPOI. RAN-translation dependent on variable CGG-repeat length is hypothesized to cause FXPOI due to the production of a polyglycine-containing FMR1-protein, FMRpolyG. Recently, FMRpolyG inclusions were found in neuronal brain cells of FXTAS patients and stromal cells of the ovary of an FXPOI patient. Study design, size, duration: Lymphocytes and granulosa cells (GCs) from women with PM (6) and women without PM (10) (controls) were analyzed by immunofluorescence (IF) staining for the presence of inclusions positive for ubiquitin and FMRpolyG. Cell lysis and protein extraction samples were subjected to Fluorescent Western Blot (WB) analysis to detect FMRP and FMRpolyG Participants/materials, setting, methods Human GCs were obtained from follicular fluid after oocyte retrieval and lymphocytes were isolated from peripheral blood using Ficoll-Paque. Cells suspended in PBS were adhered to a glass-coverslip placed at the bottom of the 6-well culture plate, via gravity sedimentation. Adhered cells were fixed, IF staining for FMRpolyG and ubiquitin was performed and analyzed by fluorescence microscopy. Fluorescent WB was used to demonstrate the expression of FMRP, FMRpolyG in extracted protein from lymphocytes and GCs. Main results and the role of chance FMRP was successfully detected by fluorescence WB in both lymphocytes and GCs. FMRP is mainly present in cytoplasm and was expressed in greater amount in GCs than in leukocytes. Moreover, FMRP expression was significantly decreased in GCs from FMR1-PM compared with controls. Lymphocytes from PM-carriers and controls were immunostained for FMRpolyG and ubiquitin. In PM-carriers, FMRpolyG was present as aggregates, whereas in controls only a weak signal without inclusions was detectable. The expression pattern of FMRpolyG in GCs was similar to that in lymphocytes with a significant increase in PM-carriers. There, the FMRpolyG-aggregates additionally demonstrated as ubiquitin-positive inclusions. These may resemble the toxic potential of these protein fractions involved the ovarian damage in developing FXPOI. Limitations, reasons for caution More patients are needed to support the present findings. Further investigation into the possible consequences of these FMRpolyG-positive inclusions in PM-carriers is also advisable. Wider implications of the findings: We found for the first time FMRpolyG-accumulation in lymphocytes and GCs from FMR1-PM-carriers in ubiquitin-positive inclusions. Future experiments evaluating consistency in more patients and elucidating the impact on fertility and prospective value for individual ovarian reserve are therefore in preparation. Trial registration number Not applicable


2021 ◽  
Vol 7 (3) ◽  
pp. eabd9440
Author(s):  
Sefan Asamitsu ◽  
Yasushi Yabuki ◽  
Susumu Ikenoshita ◽  
Kosuke Kawakubo ◽  
Moe Kawasaki ◽  
...  

Fragile X-related tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease caused by CGG triplet repeat expansions in FMR1, which elicit repeat-associated non-AUG (RAN) translation and produce the toxic protein FMRpolyG. We show that FMRpolyG interacts with pathogenic CGG repeat-derived RNA G-quadruplexes (CGG-G4RNA), propagates cell to cell, and induces neuronal dysfunction. The FMRpolyG polyglycine domain has a prion-like property, preferentially binding to CGG-G4RNA. Treatment with 5-aminolevulinic acid, which is metabolized to protoporphyrin IX, inhibited RAN translation of FMRpolyG and CGG-G4RNA–induced FMRpolyG aggregation, ameliorating aberrant synaptic plasticity and behavior in FXTAS model mice. Thus, we present a novel therapeutic strategy to target G4RNA prionoids.


2019 ◽  
Author(s):  
Amy Krans ◽  
Geena Skariah ◽  
Yuan Zhang ◽  
Bryana Bayly ◽  
Peter K. Todd

AbstractCGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames. However, the relative abundance of these proteins in FXTAS brains and their co-localization with each other and NIIs is lacking. Here we describe rater-blinded assessment of immunohistochemical and immunofluorescence staining with newly generated antibodies to different CGG RAN translation products in FXTAS and control brains as well as co-staining with ubiquitin, p62/SQSTM1, and ubiquilin 2. We find that both FMRpolyG and a second CGG repeat derived RAN translation product, FMRpolyA, accumulate in aggregates in FXTAS brains. FMRpolyG is a near-obligate component of both ubiquitin-positive and p62-positive NIIs in FXTAS, with occurrence of aggregates in 20% of all hippocampal neurons and >90% of all inclusions. A subset of these inclusions also stain positive for the ALS/FTD associated protein ubiquilin 2. Ubiquitinated inclusions and FMRpolyG+ aggregates are rarer in cortex and cerebellum. Intriguingly, FMRpolyG staining is also visible in control neuronal nuclei. In contrast to FMRpolyG, staining for FMRpolyA and CCG antisense derived RAN translation products were less abundant and were infrequent components of FMRpolyG+ inclusions. In conclusion, RAN translated FMRpolyG is a common component of ubiquitin and p62 positive inclusions in FXTAS patient brains.


2021 ◽  
Author(s):  
Katelyn M Green ◽  
Shannon L Miller ◽  
Indranil Malik ◽  
Peter K Todd

Repeat associated non-AUG (RAN) translation of mRNAs containing repeat-expansion mutations produces toxic peptides in neurons of patients suffering from neurodegenerative diseases. Recent findings indicate that RAN translation in diverse model systems is not inhibited by cellular stressors that impair global translation through phosphorylation of the alpha subunit of eIF2, the essential eukaryotic translation initiation factor that brings the initiator tRNA to the 40S ribosome. Using in vitro, cell-based, and Drosophila models, we examined the role of alternative ternary complex factors that may function in place of eIF2, including eIF2A, eIF2D, and DENR/MCTS1. Among these factors, DENR knockdown had the greatest inhibitory effect on RAN translation of expanded GGGGCC and CGG repeat reporters, and its reduction improved survival of Drosophila expressing expanded GGGGCC repeats. Taken together, these data support a role for alternative initiation factors in RAN translation and suggest they may serve as novel therapeutic targets in neurodegenerative disease.


Author(s):  
Amy Krans ◽  
Geena Skariah ◽  
Yuan Zhang ◽  
Bryana Bayly ◽  
Peter K. Todd

Abstract CGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames. However, the relative abundance of these proteins in FXTAS brains and their co-localization with each other and NIIs is lacking. Here we describe rater-blinded assessment of immunohistochemical and immunofluorescence staining with newly generated antibodies to different CGG RAN translation products in FXTAS and control brains as well as co-staining with ubiquitin, p62/SQSTM1, and ubiquilin 2. We find that both FMRpolyG and a second CGG repeat derived RAN translation product, FMRpolyA, accumulate in aggregates in FXTAS brains. FMRpolyG is a near-obligate component of both ubiquitin-positive and p62-positive NIIs in FXTAS, with occurrence of aggregates in 20% of all hippocampal neurons and > 90% of all inclusions. A subset of these inclusions also stain positive for the ALS/FTD associated protein ubiquilin 2. Ubiquitinated inclusions and FMRpolyG+ aggregates are rarer in cortex and cerebellum. Intriguingly, FMRpolyG staining is also visible in control neuronal nuclei. In contrast to FMRpolyG, staining for FMRpolyA and CCG antisense derived RAN translation products were less abundant and less frequent components of ubiquitinated inclusions. In conclusion, RAN translated FMRpolyG is a common component of ubiquitin and p62 positive inclusions in FXTAS patient brains.


2001 ◽  
Vol 353 (3) ◽  
pp. 735
Author(s):  
K. PEYROLLIER ◽  
E. HAJDUCH ◽  
A. GRAY ◽  
G. J. LITHERLAND ◽  
A. R. PRESCOTT ◽  
...  

2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


Sign in / Sign up

Export Citation Format

Share Document