Effects of salinity on seedling emergence and early seedling growth of Irvingia gabonensis (Irvingiaceae)

2017 ◽  
Vol 45 (2) ◽  
pp. 282-295
Author(s):  
R. Vihotogbé ◽  
C. Watson ◽  
R. Glèlè Kakaï ◽  
F. Wichern ◽  
B. Sinsin ◽  
...  
1969 ◽  
Vol 9 (39) ◽  
pp. 422 ◽  
Author(s):  
A Lazenby ◽  
JMA Schiller

A study was made in seed boxes at Armidale, New South Wales, on a red earth soil, of the effects of two soil tilths (particles<0.3 cm and between 0.6 and 1.25 cm), three seeding depths (surface seeding, 1.25 cm and 2.5 cm), and three levels of applied phosphorus (the equivalents of phosphorus in nil, 378 kg/ha and 756 kg/ha superphosphate, applied as sodium di-hydrogen phosphate) on emergence and early seedling growth of Phalaris tuberosa. Water was made non-limiting as far as practicable. Seedling counts were made every four days until the first harvest, 32 days after sowing. Four fortnightly destructive harvests were made to examine treatment effects on post-emergence seedling growth. Seeding into the fine tilth at a depth of 1.25 cm on the high phosphorus treatment gave the fastest and highest total seedling emergence. Conditions most favourable to immediate post-emergence seedling growth were sowing into a fine seedbed at a depth of 1.25 cm or 2.5 cm in combination with phosphorus ; the rate of seedling growth increased with rate of phosphorus applied.


1997 ◽  
Vol 122 (3) ◽  
pp. 427-432 ◽  
Author(s):  
Nancy E. Roe ◽  
Peter J. Stoffella ◽  
Donald Graetz

The composition of composts derived from municipal solid wastes can affect emergence and seedling growth. Composts consisting of biosolids and yard trimmings [standard compost (SC)] alone or with mixed waste paper (MWP), refuse-derived fuel (RDF), or refuse-derived fuel residuals (RDFR) were evaluated in seedling trays and pots for vegetable crop seedling emergence and growth. In trays, tomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativus L.), and pepper (Capsicum annuum L.) seedlings emerged faster from a commercial peat-lite mix and from sandy field soil than from the composts. Plants were tallest and shoots were generally heaviest in the peat-lite mix and aged SC and smallest in the field soil. MWP compost generally inhibited early seedling growth more than RDF or RDFR composts. Among the composts, seedlings were tallest and heaviest in SC. In pots, growth of each vegetable was generally greatest in SC, followed by other composts, and lowest in sandy soil. Tomato and pepper seedling emergence was more sensitive to the inhibitory effects of the RDF, RDFR, and MWP composts than cucumber seedling emergence. Fertilizer increased plant growth in each medium except SC, in which cucumber stem diameter was not increased. Adding MWP, RDF, or RDFR to SC generally decreased seedling emergence and growth. The composts prolonged days to emergence and decreased percent emerged seedlings. However, subsequent seedling growth in composts was equal to or greater than seedlings in the peat-lite mix and much greater than those in the sandy field soil.


2010 ◽  
Vol 46 (No. 2) ◽  
pp. 54-63 ◽  
Author(s):  
R. Sayar ◽  
H. Bchini ◽  
M. Mosbahi ◽  
H. Khemira

Two durum wheat (Triticum durum Desf.) cultivars were tested for salt and drought tolerance at germination, seedling emergence and early seedling growth in NaCl and PEG-8000 solutions of different osmotic potentials (&ndash;0.2, &ndash;0.4, &ndash;0.6 and &ndash;0.8 MPa). Daily and final germination and emergence percentage, as well as germination and seedling emergence rate, seedling growth, fresh and dry weight were recorded under controlled conditions. Results showed that germination and emergence rates were delayed by both solutions in both cultivars, but Omrabia showed higher germination and emergence rates than BD290273 in NaCl while BD290273 was less affected by NaCl and PEG solutions at the emergence stage. Sodium chloride had a lesser effect on both cultivars in terms of germination rate, emergence rate, final germination and emergence percentage than did PEG-8000. This conclusively proves that the adverse effect of PEG-8000 on germination, emergence and early seedling growth was due to the osmotic effect rather than to the specific ion. Seedling growth was reduced by both stresses. However, NaCl usually caused less damage than PEG to durum wheat seedlings, suggesting that NaCl and PEG acted through different mechanisms.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 323
Author(s):  
Sujuan Shi ◽  
Lulu An ◽  
Jingjing Mao ◽  
Oluwaseun Olayemi Aluko ◽  
Zia Ullah ◽  
...  

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.


Sign in / Sign up

Export Citation Format

Share Document