scholarly journals Effect of Cerbera Manghas Biodiesel on Diesel Engine Performance

Author(s):  
Willyanto Anggono ◽  
M. M. Noor ◽  
F. D. Suprianto ◽  
L. A. Lesmana ◽  
G. J. Gotama ◽  
...  

In order to reduce the use of fossil fuel without interfering the availability of food crop, Cerbera manghas biodiesel has been studied as potential renewable fuel. This study investigated Cerbera manghas biodiesel as a replacement for pure petro-diesel and palm oil biodiesel produced in Indonesia. The investigation result indicates that Cerbera manghas biodiesel fuel has a lower density, kinematic viscosity, sulfur content, color (lighter), water content, distillation point compared to pure petro-diesel and palm oil biodiesel. Higher flash point and cetane index value in Cerbera manghas biodiesel were also discovered. The study investigated further the effect of biodiesel derived from Cerbera manghas biodiesel compared with pure petro-diesel and palm oil biodiesel in a single cylinder diesel engine. The study suggested that Cerbera manghas biodiesel has better engine performance (fuel consumption, brake mean effective pressure, thermal efficiency, torque, and power) compared to pure petro-diesel and palm oil biodiesel. The utilization of Cerbera manghas biodiesel gave better engine performance output compared to pure petro-diesel and palm oil biodiesel. This study supported the viability of Cerbera manghas biodiesel to be implemented as an alternative diesel fuel without interfering food resources or requiring additional modification to the existing diesel engine.

2021 ◽  
pp. 0958305X2110348
Author(s):  
Muhamad SN Awang ◽  
Nurin WM Zulkifli ◽  
Muhammad M Abbas ◽  
Syahir A Zulkifli ◽  
Mohd NAM Yusoff ◽  
...  

The main purposes of this research were to study the diesel engines' performance and emission characteristics of quaternary fuels, as well as to analyze their tribological properties. The quaternary comprised waste plastic pyrolysis oil, waste cooking oil biodiesel, palm oil biodiesel, and commercial diesel. Their compositions were analyzed by gas chromatography and mass spectrometry. By using mechanical stirring, four quaternary fuels with different compositions were prepared. Because Malaysia is expected to implement B30 (30% palm oil biodiesel content in diesel) in 2025, B30a (30% palm oil biodiesel and 70% commercial diesel) mixture was prepared as a reference fuel. In total, 5%, 10%, and 15% of each waste plastic pyrolysis oil and waste cooking oil biodiesel were mixed with palm oil biodiesel –commercial diesel mixture to improve fuel characteristics, engine performance, and emission parameters. The palm oil biodiesel of the quaternary fuel mixture was kept constant at 10%. The results were compared with B30a fuel and B10 (10% for palm oil biodiesel and 90% for diesel; commercial diesel). The findings indicated that compared with B30a fuel, the brake power and brake thermal efficiency of all quaternary fuel mixtures were increased by up to 2.78% and 9.81%, respectively. Compared with B30a, all quaternary fuels also showed up to a 6.31% reduction in brake-specific fuel consumption. Compared with B30a, the maximum carbon monoxide and carbon dioxide emissions of B40 (60% commercial diesel, 10% palm oil biodiesel, 15% waste plastic pyrolysis oil and 15% waste cooking oil biodiesel) quaternary fuel were reduced by 19.66% and 4.16%, respectively. The B20 (80% commercial diesel, 10% palm oil biodiesel, 5% waste plastic pyrolysis oil and 5% waste cooking oil biodiesel) quaternary blend showed a maximum reduction of 41.86% in hydrocarbon emissions collated to B30a. Compared with B10, the average coefficient of friction of the quaternary fuel mixture of B40, B30b (70% commercial diesel, 10% palm oil biodiesel, 10% waste plastic pyrolysis oil and 10% waste cooking oil biodiesel), and B20 were reduced by 3.01%, 1.20%, and 0.23%, respectively. Therefore, the quaternary blends show excellent utilization potential in diesel engine performance.


2019 ◽  
Vol 130 ◽  
pp. 01030
Author(s):  
Sutrisno ◽  
Willyanto Anggono ◽  
Fandi Dwiputra Suprianto ◽  
Cokro Daniel Santosa ◽  
Michael Suryajaya ◽  
...  

Avocado (Persea americana Mill) is a popular fruit in Indonesia. Its popularity leads to high consumption of this fruit and wastes from its seed. In order to develop renewable energy and reducing wastes in the environment, P. americana seed may be extracted for its oil to create biodiesel fuel. In this study, P. americana seed is obtained through the soxhlet apparatus and transesterification process. After obtaining P. americana seed oil, the oil was mixed with pure petro-diesel with a ratio of 10:90 (B10 fuel) and 20:80 (B20 fuel), respectively. These fuels were tested for their fuel characteristics and engine performances, together with pure petro-diesel and palm oil biodiesel. The fuel characteristics results suggest positive characteristics of B10 and B20 compared to other fuels. For engine performance tests, B10 and B20 fuels have less engine performance than other fuels. However, the differences between these fuels results are small. Overall, the positive aspect of B10 and B20 fuels supersede small disadvantages they have and thus suitable to substitute pure petro-diesel and palm oil biodiesel.


ACS Omega ◽  
2021 ◽  
Author(s):  
Muhamad Sharul Nizam Awang ◽  
Nurin Wahidah Mohd Zulkifli ◽  
Muhammad Mujtaba Abbas ◽  
Syahir Amzar Zulkifli ◽  
Md Abul Kalam ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 692
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


2013 ◽  
Vol 465-466 ◽  
pp. 322-326 ◽  
Author(s):  
M. Adlan Abdullah ◽  
Farid Nasir Ani ◽  
Masjuki Hassan

It is in the interest of proponents of biodiesel to increase the utilization of the renewable fuel. The similarities of the methyl ester properties to diesel fuel and its miscibility proved to be an attractive advantage. It is however generally accepted that there are some performance and emissions deficit when a diesel engine is operated with biodiesel. There are research efforts to improve the diesel engine design to optimize the combustion with biodiesel. Since the common rail engines operates on flexible injection strategies, there exist an opportunity to improve engine performance and offset the fuel economy deficit by means of optimizing the engine control strategies. This approach may prove to be more practical and easily implemented. This study investigated the effects of the fuel injection parameters - rail pressure, injection duration and injection timing - on a common rail passenger car engine in terms of the fuel economy. Palm oil based biodiesel up to 30% blend in diesel was used in this study. The end of injection, (EOI), was found to be the most important parameter for affecting fuel consumption and thermal efficiency.


2018 ◽  
Vol 2018 (0) ◽  
pp. GS6-4
Author(s):  
Rio Arinedo SEMBIRING ◽  
Riky Stepanus SITUMORANG ◽  
Yoshihiko OISHI ◽  
Hideki KAWAI ◽  
Himsar AMBARITA

Sign in / Sign up

Export Citation Format

Share Document