scholarly journals Experimental Investigation of Avocado Seed Oil Utilization in Diesel Engine Performance

2019 ◽  
Vol 130 ◽  
pp. 01030
Author(s):  
Sutrisno ◽  
Willyanto Anggono ◽  
Fandi Dwiputra Suprianto ◽  
Cokro Daniel Santosa ◽  
Michael Suryajaya ◽  
...  

Avocado (Persea americana Mill) is a popular fruit in Indonesia. Its popularity leads to high consumption of this fruit and wastes from its seed. In order to develop renewable energy and reducing wastes in the environment, P. americana seed may be extracted for its oil to create biodiesel fuel. In this study, P. americana seed is obtained through the soxhlet apparatus and transesterification process. After obtaining P. americana seed oil, the oil was mixed with pure petro-diesel with a ratio of 10:90 (B10 fuel) and 20:80 (B20 fuel), respectively. These fuels were tested for their fuel characteristics and engine performances, together with pure petro-diesel and palm oil biodiesel. The fuel characteristics results suggest positive characteristics of B10 and B20 compared to other fuels. For engine performance tests, B10 and B20 fuels have less engine performance than other fuels. However, the differences between these fuels results are small. Overall, the positive aspect of B10 and B20 fuels supersede small disadvantages they have and thus suitable to substitute pure petro-diesel and palm oil biodiesel.

Author(s):  
Willyanto Anggono ◽  
M. M. Noor ◽  
F. D. Suprianto ◽  
L. A. Lesmana ◽  
G. J. Gotama ◽  
...  

In order to reduce the use of fossil fuel without interfering the availability of food crop, Cerbera manghas biodiesel has been studied as potential renewable fuel. This study investigated Cerbera manghas biodiesel as a replacement for pure petro-diesel and palm oil biodiesel produced in Indonesia. The investigation result indicates that Cerbera manghas biodiesel fuel has a lower density, kinematic viscosity, sulfur content, color (lighter), water content, distillation point compared to pure petro-diesel and palm oil biodiesel. Higher flash point and cetane index value in Cerbera manghas biodiesel were also discovered. The study investigated further the effect of biodiesel derived from Cerbera manghas biodiesel compared with pure petro-diesel and palm oil biodiesel in a single cylinder diesel engine. The study suggested that Cerbera manghas biodiesel has better engine performance (fuel consumption, brake mean effective pressure, thermal efficiency, torque, and power) compared to pure petro-diesel and palm oil biodiesel. The utilization of Cerbera manghas biodiesel gave better engine performance output compared to pure petro-diesel and palm oil biodiesel. This study supported the viability of Cerbera manghas biodiesel to be implemented as an alternative diesel fuel without interfering food resources or requiring additional modification to the existing diesel engine.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 692
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the performance and emission of a thermal barrier coating (TBC) engine which applied palm oil biodiesel and diesel as a fuel were evaluated. TBC was prepared by using a series of mixture consisting different blend ratio of yttria stabilized zirconia (Y2O3·ZrO2) and aluminum oxide-silicon oxide (Al2O3·SiO2) via plasma spray coating technique. The experimental results showed that mixture of TBC with 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 had an excellent nitrogen oxide (NO), carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (HC) reductions compared to other blend-coated pistons. The finding also indicated that coating mixture 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 had the highest brake thermal efficiency (BTE) and lowest of brake specific fuel consumption (BSFC) compared to all mixture coating. Reductions of HC and CO emissions were also recorded for 60% Y2O3·ZrO2 + 40% Al2O3·SiO2 and 50% Y2O3·ZrO2 + 50% Al2O3·SiO2 coatings. These encouraging findings had further proven the significance of TBC in enhancing the engine performance and emission reductions operated with different types of fuel.


2012 ◽  
Vol 29 (2) ◽  
pp. 77
Author(s):  
H.H Win

Studies on alternative fuels have been active in Myanmar because the rapid mechanization of the agricultural sector demands higher diesel consumption. Jatropha oil-based biodiesel is one of the potential alternatives because of the relative ease of growing and producing this plant. In this study, both the experimental and theoretical analyses of Jatropha oil-based B20 biodiesel wereperformed and compared with conventional diesel. First, B20 was prepared by the base-catalyzed transesterification of the oil and its properties were measured. Second, separate performance tests were conducted on diesel and the biodiesel fuel using a LEYER-16 diesel engine. The speed range of interest was between 1000 r.p.m and 2000 r.p.m. Third, performance simulations were done in MATLAB using an algorithm written based on the theory of the engine operating cycle and air/ fuel compositions. Both experimental and simulation results show that there were no significant differences in the brake power and thermal efficiency of the engine between using diesel and the B20 diesel. However, fuel consumption when using B20 was slightly higher than that of diesel. This difference was marginal and it can be concluded that engine performance characteristics are the same for both diesel and B20 suggesting that B20 has great potential to be used as a substitute for diesel.


2019 ◽  
Vol 13 (3) ◽  
pp. 48-53
Author(s):  
P. P. Oshchepkov ◽  
I. A. Zaev ◽  
S. V. Smirnov ◽  
A. V. Bizhaev

Palm oil is comparable to traditional diesel fuel in terms of calorifi c value, stoichiometric ratio, and cetane number. However, its increased kinematic viscosity and pour point make it diffi cult to use in pure form in diesel engines. (Research purpose) To study specifi c features of burning: diesel fuel with various additives of palm oil (biodiesel fuel); pure 100-percent palm oil; biodiesel fuel with various additives of palm oil and hydrogen peroxide, as well as to develop a method to control its combustion process. (Materials and methods) To determine the ignition time lag, the authors chose a method of kinetic modeling of self-ignition of biodiesel fuel in the air. The self-ignition process was simulated using the Chemical Workbench software package. An adiabatic calorimetric bomb model was used to perform calculations. To describe the process of self-ignition, a universal kinetic mechanism was used, which was verifi ed to calculate self-ignition of diesel and biodiesel fuel surrogates, as well as the formation of toxic substances and soot in the combustion processes. (Results and discussion) It is shown that adding palm oil to diesel fuel increases its ignition time lag, especially at low and medium temperatures of 750-950 kelvin. It was determined that with addition of 10 percent palm oil, the ignition time lag of biodiesel fuel is almost the same as that of diesel fuel no more than 5 percent. Increasing the amount of palm oil additive up to 30 percent and more signifi cantly increases the ignition time lag of the fuel. When using only palm oil as a fuel, the ignition time lag in the temperature range of 800-950 kelvin increases in two times. The study determined the optimal amount of hydrogen peroxide to be used for each composition of biodiesel fuel with various additives of palm oil. (Conclusions) It is shown that additives of hydrogen peroxide can infl uence the reactivity of biodiesel fuel and thereby regulate its ignition time lag.


2021 ◽  
pp. 0958305X2110348
Author(s):  
Muhamad SN Awang ◽  
Nurin WM Zulkifli ◽  
Muhammad M Abbas ◽  
Syahir A Zulkifli ◽  
Mohd NAM Yusoff ◽  
...  

The main purposes of this research were to study the diesel engines' performance and emission characteristics of quaternary fuels, as well as to analyze their tribological properties. The quaternary comprised waste plastic pyrolysis oil, waste cooking oil biodiesel, palm oil biodiesel, and commercial diesel. Their compositions were analyzed by gas chromatography and mass spectrometry. By using mechanical stirring, four quaternary fuels with different compositions were prepared. Because Malaysia is expected to implement B30 (30% palm oil biodiesel content in diesel) in 2025, B30a (30% palm oil biodiesel and 70% commercial diesel) mixture was prepared as a reference fuel. In total, 5%, 10%, and 15% of each waste plastic pyrolysis oil and waste cooking oil biodiesel were mixed with palm oil biodiesel –commercial diesel mixture to improve fuel characteristics, engine performance, and emission parameters. The palm oil biodiesel of the quaternary fuel mixture was kept constant at 10%. The results were compared with B30a fuel and B10 (10% for palm oil biodiesel and 90% for diesel; commercial diesel). The findings indicated that compared with B30a fuel, the brake power and brake thermal efficiency of all quaternary fuel mixtures were increased by up to 2.78% and 9.81%, respectively. Compared with B30a, all quaternary fuels also showed up to a 6.31% reduction in brake-specific fuel consumption. Compared with B30a, the maximum carbon monoxide and carbon dioxide emissions of B40 (60% commercial diesel, 10% palm oil biodiesel, 15% waste plastic pyrolysis oil and 15% waste cooking oil biodiesel) quaternary fuel were reduced by 19.66% and 4.16%, respectively. The B20 (80% commercial diesel, 10% palm oil biodiesel, 5% waste plastic pyrolysis oil and 5% waste cooking oil biodiesel) quaternary blend showed a maximum reduction of 41.86% in hydrocarbon emissions collated to B30a. Compared with B10, the average coefficient of friction of the quaternary fuel mixture of B40, B30b (70% commercial diesel, 10% palm oil biodiesel, 10% waste plastic pyrolysis oil and 10% waste cooking oil biodiesel), and B20 were reduced by 3.01%, 1.20%, and 0.23%, respectively. Therefore, the quaternary blends show excellent utilization potential in diesel engine performance.


In the current study, the primary components used are pumpkin seed oil biodiesel with diesel was tested in diesel engine and its performance, exhaust emissions, and its effects were observed. The pumpkin seed oil that is used to produce biodiesel undergoes transesterification process along with ethanol, sulphuricacid ,andNaOH catalysts . With blends like B0,B20,B40,B60,B80,and B100, the test on engine performance is obtained, and the reports exposed that, B40 is overlying blend among the other biodiesel blends. In addition, to enhance the performance characteristics of B20,B60,B80 by volume was combined with B40 blend. Due to lower heating characteristics of biodiesel, the observations of BTE for B40 is 4.6% lower than diesel. But the observations of BSFC for B40 is 7.3% higher than diesel. The heat emission rate ofB20,B40,andB60 are almost identical to diesel fuel ,apace with ,at higher loads B40 emitted37.5%less CO and NOx emission was raised at the rate of 95% when correlated to diesel fuel. However, It is observed that there is no major difference not much difference in the emissions (HC, NO, andCO) and characteristics of the engine when using the diesel fuel and Pumpkin seed biodiesel fuel blends


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Navin Ramasamy ◽  
Mohammad Abul Kalam ◽  
Mahendra Varman ◽  
Yew Heng Teoh

In this study, the effect of a thermal barrier coating with yttria-stabilized zirconia (YSZ) and aluminum silicate (Al2O3·SiO2) alongside an NiCrAl bond coat on the engine performance and emission analysis was evaluated by using conventional diesel and pure palm oil biodiesel. These materials were coated on the piston alloy via plasma spray coating. The findings demonstrated that YSZ coating presented better engine performances, in terms of brake thermal efficiency (BTE) and brake-specific fuel consumption (BSFC) for both fuels. The piston with YSZ coating materials achieved the highest BTE (15.94% for diesel, 14.55% for biodiesel) and lowest BSFC (498.96 g/kWh for diesel, 619.81 g/kWh for biodiesel). However, Al2O3·SiO2 coatings indicated better emission with lowest emissions of NO, CO, and CO2 for both diesel and biodiesel. For the uncoated piston, the results indicated that the engine clocked the highest torque and power, especially on diesel fuel due to the high viscosity and low caloric value, and it recorded the lowest hydrocarbon emission due to the complete combustion of fuel in the engine. Hence, it was concluded that the YSZ coating could lead to better engine performance, while Al2O3·SiO2 showed promising results in terms of greenhouse gas emission.


Fuel ◽  
2015 ◽  
Vol 150 ◽  
pp. 732
Author(s):  
Vladimir Plata ◽  
Carlos Ortiz ◽  
Paola Gauthier-Maradei ◽  
Viatcheslav Kafarov

Sign in / Sign up

Export Citation Format

Share Document