scholarly journals A Computational Study of the Protein-Ligand Interactions in CDK2 Inhibitors: Using Quantum Mechanics/Molecular Mechanics Interaction Energy as a Predictor of the Biological Activity

2007 ◽  
Vol 92 (2) ◽  
pp. 430-439 ◽  
Author(s):  
Jans H. Alzate-Morales ◽  
Renato Contreras ◽  
Alejandro Soriano ◽  
Iñaki Tuñon ◽  
Estanislao Silla
2021 ◽  
Author(s):  
Prashant Kumar ◽  
Paulina Dominiak

<div> <div> <div> <p>Computational analysis of protein-ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse on the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions such as in docking programs, we could say that they all rely on equations that sum each type of protein-ligand interactions to model the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions contribute one of the most important part of total interaction energies between macromolecules, unlike dispersion forces they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this paper, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and Darunavir) have been analysed using charge densities from a transferable aspherical-atom data bank. Moreover, we analyse the electrostatic interaction energy for an ensemble of structures using molecular dynamic simulation to highlight the main features related to the importance of this interaction for binding affinity. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Prashant Kumar ◽  
Paulina Dominiak

<div> <div> <div> <p>Computational analysis of protein-ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse on the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions such as in docking programs, we could say that they all rely on equations that sum each type of protein-ligand interactions to model the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions contribute one of the most important part of total interaction energies between macromolecules, unlike dispersion forces they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this paper, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and Darunavir) have been analysed using charge densities from a transferable aspherical-atom data bank. Moreover, we analyse the electrostatic interaction energy for an ensemble of structures using molecular dynamic simulation to highlight the main features related to the importance of this interaction for binding affinity. </p> </div> </div> </div>


2015 ◽  
Vol 21 (6) ◽  
Author(s):  
Zhuo Yang ◽  
Yingtao Liu ◽  
Zhaoqiang Chen ◽  
Zhijian Xu ◽  
Jiye Shi ◽  
...  

2011 ◽  
Vol 51 (9) ◽  
pp. 2082-2089 ◽  
Author(s):  
Chaya Rapp ◽  
Chakrapani Kalyanaraman ◽  
Aviva Schiffmiller ◽  
Esther Leah Schoenbrun ◽  
Matthew P. Jacobson

1982 ◽  
Vol 104 (23) ◽  
pp. 6424-6434 ◽  
Author(s):  
Jeffrey M. Blaney ◽  
Paul K. Weiner ◽  
Andrew Dearing ◽  
Peter A. Kollman ◽  
Eugene C. Jorgensen ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2675 ◽  
Author(s):  
Fabián G. Cantú Reinhard ◽  
Yen-Ting Lin ◽  
Agnieszka Stańczak ◽  
Sam P. de Visser

The cytochromes P450 are versatile enzymes found in all forms of life. Most P450s use dioxygen on a heme center to activate substrates, but one class of P450s utilizes hydrogen peroxide instead. Within the class of P450 peroxygenases, the P450 OleTJE isozyme binds fatty acid substrates and converts them into a range of products through the α-hydroxylation, β-hydroxylation and decarboxylation of the substrate. The latter produces hydrocarbon products and hence can be used as biofuels. The origin of these product distributions is unclear, and, as such, we decided to investigate substrate positioning in the active site and find out what the effect is on the chemoselectivity of the reaction. In this work we present a detailed computational study on the wild-type and engineered structures of P450 OleTJE using a combination of density functional theory and quantum mechanics/molecular mechanics methods. We initially explore the wild-type structure with a variety of methods and models and show that various substrate activation transition states are close in energy and hence small perturbations as through the protein may affect product distributions. We then engineered the protein by generating an in silico model of the double mutant Asn242Arg/Arg245Asn that moves the position of an active site Arg residue in the substrate-binding pocket that is known to form a salt-bridge with the substrate. The substrate activation by the iron(IV)-oxo heme cation radical species (Compound I) was again studied using quantum mechanics/molecular mechanics (QM/MM) methods. Dramatic differences in reactivity patterns, barrier heights and structure are seen, which shows the importance of correct substrate positioning in the protein and the effect of the second-coordination sphere on the selectivity and activity of enzymes.


Author(s):  
Deepika Maliwal ◽  
Raghuvir R. S. Pissurlenkar ◽  
Vikas Telvekar

Diabetes is a major health issue that half a billion people affected worldwide. It is a serious, long-term medical condition majorly impacting the lives and well-being of individuals, families, and societies at large. It is amongst the top 10 diseases responsible for the death amongst adults with an expected rise to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045. The carbohydrates absorbed into the body are hydrolyzed by pancreatic α-amylase and other enzymes, human α-glucosidase. The α-amylase and α-glucosidase are validated therapeutic targets in the treatment of Type II diabetes (T2DM) as they play a vital role in modulating the blood glucose post meal. Herein, we report novel and diverse molecules as potential candidates, with predicted affinity for α-amylase and α-glucosidase. These molecules have been identified via hierarchical multistep docking of small molecules database with the estimated binding free energies. A Glide XP Score cutoff −8.00 kcal/mol was implemented to filter out non potential molecules. Four molecules viz. amb22034702, amb18105639, amb17153304, and amb9760832 have been identified after an exhaustive computational study involving, evaluation of binding interactions and assessment of the pharmacokinetics and toxicity profiles. The in-depth analysis of protein– ligand interactions was performed using a 100ns molecular dynamics (MD) simulation to establish the dynamic stability. Furthermore MM-GBSA based binding free energies were computed for 1000 trajectory snapshots to ascertain the strong binding affinity of these molecules for α-amylase and αglucosidase. The identified molecules can be considered as promising candidates for further drug development through necessary experimental assessments.


2020 ◽  
Vol 27 (28) ◽  
pp. 4741-4749 ◽  
Author(s):  
Silvana Russo ◽  
Walter Filgueira de Azevedo

Background: Cannabinoid receptor 1 has its crystallographic structure available in complex with agonists and inverse agonists, which paved the way to establish an understanding of the structural basis of interactions with ligands. Dipyrone is a prodrug with analgesic capabilities and is widely used in some countries. Recently some evidence of a dipyrone metabolite acting over the Cannabinoid Receptor 1has been shown. Objective: Our goal here is to explore the dipyrone metabolite 4-aminoantipyrine as a Cannabinoid Receptor 1 agonist, reviewing dipyrone characteristics, and investigating the structural basis for its interaction with the Cannabinoid Receptor 1. Method: We reviewed here recent functional studies related to the dipyrone metabolite focusing on its action as a Cannabinoid Receptor 1 agonist. We also analyzed protein-ligand interactions for this complex obtained through docking simulations against the crystallographic structure of the Cannabinoid Receptor 1. Results: Analysis of the crystallographic structure and docking simulations revealed that most of the interactions present in the docked pose were also present in the crystallographic structure of Cannabinoid Receptor 1 and agonist. Conclusion: Analysis of the complex of 4-aminoantipyrine and Cannabinoid Receptor 1 revealed the pivotal role played by residues Phe 170, Phe 174, Phe 177, Phe 189, Leu 193, Val 196, and Phe 379, besides the conserved hydrogen bond at Ser 383. The mechanistic analysis and the present computational study suggest that the dipyrone metabolite 4-aminoantipyrine interacts with the Cannabinoid Receptor 1.


Sign in / Sign up

Export Citation Format

Share Document