scholarly journals Implementation of the variation of the luni-solar acceleration into GLONASS orbit calculus

2021 ◽  
Vol 65 (03) ◽  
pp. 459-471
Author(s):  
Sid Ahmed Medjahed ◽  
Abdelhalim Niati ◽  
Noureddine Kheloufi ◽  
Habib Taibi

In the differential equation system describes the motion of GLONASS satellites (rus. Globalnaya Navigazionnaya Sputnikovaya Sistema, or Global Navigation Satellite System ), the acceleration caused by the luni-solar traction is often taken as a constant during the period of the integration. In this work-study, we assume that the acceleration due to the luni-solar traction is not constant but varies linearly during the period of integration following this assumption; the linear functions in the three axes of the luni-solar acceleration are computed for an interval of 30 min and then implemented into the differential equations. The use of the numerical integration of Runge-Kutta fourth-order is recommended in the GLONASS-ICD (Interface Control Document) to solve for the differential equation system in order to get an orbit solution. The computation of the position and velocity of a GLONASS satellite in this study is performed by using the Runge-Kutta fourth-order method in forward and backward integration, with initial conditions provided in the broadcast ephemerides file.

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 306
Author(s):  
Tamás S. Biró ◽  
Lehel Csillag ◽  
Zoltán Néda

A mean-field type model with random growth and reset terms is considered. The stationary distributions resulting from the corresponding master equation are relatively easy to obtain; however, for practical applications one also needs to know the convergence to stationarity. The present work contributes to this direction, studying the transient dynamics in the discrete version of the model by two different approaches. The first method is based on mathematical induction by the recursive integration of the coupled differential equations for the discrete states. The second method transforms the coupled ordinary differential equation system into a partial differential equation for the generating function. We derive analytical results for some important, practically interesting cases and discuss the obtained results for the transient dynamics.


2015 ◽  
Vol 10 (2) ◽  
pp. 74
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita

In this paper, it will be studied stability for a SEIR epidemic model with infectious force in latent, infected and immune period with incidence rate. From the model it will be found investigated the existence and uniqueness solution  of points its equilibrium. Existence solution of points equilibrium proved by show its differential equations system of equilibrium continue, and uniqueness solution of points equilibrium proved by show its differential equation system of equilibrium differentiable continue. 


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qiyuan Wei ◽  
Liwei Zhang

<p style='text-indent:20px;'>An accelerated differential equation system with Yosida regularization and its numerical discretized scheme, for solving solutions to a generalized equation, are investigated. Given a maximal monotone operator <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> on a Hilbert space, this paper will study the asymptotic behavior of the solution trajectories of the differential equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \dot{x}(t)+T_{\lambda(t)}(x(t)-\alpha(t)T_{\lambda(t)}(x(t))) = 0,\quad t\geq t_0\geq 0, \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>to the solution set <inline-formula><tex-math id="M2">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> of a generalized equation <inline-formula><tex-math id="M3">\begin{document}$ 0 \in T(x) $\end{document}</tex-math></inline-formula>. With smart choices of parameters <inline-formula><tex-math id="M4">\begin{document}$ \lambda(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \alpha(t) $\end{document}</tex-math></inline-formula>, we prove the weak convergence of the trajectory to some point of <inline-formula><tex-math id="M6">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ \|\dot{x}(t)\|\leq {\rm O}(1/t) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M8">\begin{document}$ t\rightarrow +\infty $\end{document}</tex-math></inline-formula>. Interestingly, under the upper Lipshitzian condition, strong convergence and faster convergence can be obtained. For numerical discretization of the system, the uniform convergence of the Euler approximate trajectory <inline-formula><tex-math id="M9">\begin{document}$ x^{h}(t) \rightarrow x(t) $\end{document}</tex-math></inline-formula> on interval <inline-formula><tex-math id="M10">\begin{document}$ [0,+\infty) $\end{document}</tex-math></inline-formula> is demonstrated when the step size <inline-formula><tex-math id="M11">\begin{document}$ h \rightarrow 0 $\end{document}</tex-math></inline-formula>.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Ulrich Werner

This paper shows a theoretical vibration analysis regarding excitation due to elliptical shaft journals in sleeve bearings of electrical motors, based on a simplified rotordynamic model. It is shown that elliptical shaft journals lead to kinematic constraints regarding the movement of the shaft journals on the oil film of the sleeve bearings and therefore to an excitation of the rotordynamic system. The solution of the linear differential equation system leads to the mathematical description of the movement of the rotor mass, the shaft journals, and the sleeve bearing housings. Additionally the relative movements between the shaft journals and the bearing housings are deduced, as well as the bearing housing vibration velocities. The presented simplified rotordynamic model can also be applied to rotating machines, other than electrical machines. In this case, only the electromagnetic spring valuecmhas to be put to zero.


2020 ◽  
Vol 5 (5) ◽  
pp. 22-27
Author(s):  
Puskar R. Pokhrel ◽  
Bhabani Lamsal

Employing the Lotka -Voltera (1926) prey-predator model equation, the system is presented with harvesting effort for both species prey and predator. We analyze the stability of the system of ordinary differential equation after calculating the Eigen values of the system. We include the harvesting term for both species in the model equation, and observe the dynamic analysis of prey-predator populations by including the harvesting efforts on the model equation. We also analyze the population dynamic of the system by varying the harvesting efforts on the system. The model equation are solved numerically by applying Runge - Kutta fourth order method.


Author(s):  
Alexandre Malon ◽  
Thierry Muller

An analytic investigation of the thermal exchanges in channels is conducted with the prospect of building a simple method to determine the Nusselt number in steady, laminar or turbulent and monodimensional flow through rectangular and annular spaces with any ratio of constant and uniform heat rate. The study of the laminar case leads to explicit laws for the Nusselt number while the turbulent case is solved using a Reichardt turbulent viscosity model resulting in easy to solve one-dimensional ordinary differential equation system. This differential equation system is solved using a Matlab based boundary value problems solver (bvp4c). A wide range of Reynolds, Prandtl and radius ratio is explored with the prospect of building correlation laws allowing the computing of Nusselt numbers for any radius ratio. Those correlations are in good agreement with the results obtained by W.M. Kays and E.Y. Leung in 1963 [1]. They conduced a similar analysis but with an experimental basis, they explored a greater range of Prandtl but only a few discreet radius ratio. The correlations are also compared with a CFD analysis made on a case extracted from the Re´acteur Jules Horowitz.


Sign in / Sign up

Export Citation Format

Share Document