scholarly journals The Dynamic of Phytoplankton Community Structure in Face of Warming Climate in A Tropical Man-Made Lake

Author(s):  
Sunardi Sunardi ◽  
Rina Febriani ◽  
Budi Irawan ◽  
Mutia Septi Saputri

<p>In freshwater ecosystems, water temperature plays as an environmental factor that regulates its structure and function. A research on the impacts of changes in temperature to the dynamics of the Phytoplankton community structure has been done. Data from nineteen-year period (1995 to 2013) were collected from Cirata Reservoir as an example of artificial tropical lake in Indonesia. The research aimed to determine the changes of water temperature as the impact of climate warming on the dynamics of phytoplankton community structure. Different measures such as species richness, diversity index, and abundance were measured in order to understand the changes of phytoplankton community structure. Trend analysis, linear regression, and correlation were applied to achieve our objective. The study revealed that changes in water temperature have affected the species richness, but not the diversity index and abundance of the phytoplankton. Bacilariophyceae and Cyanophyceae were found as two predominant phytoplankton classes in the lake with percentage of 48,45 and 41,43 respectively, assuming their capacity to adapt the new environment. This study suggests that climate warming implies changes of the freshwater ecosystems.</p>

2021 ◽  
Vol 267 ◽  
pp. 01026
Author(s):  
Ziqi Zhang ◽  
Lei Yang ◽  
Zemeng Duan ◽  
Hongyan Shen

On the basis of the “Environmental quality standard for surface water” (GB 3838-2002) in China, eight water quality indexes were measured in M River, including pH, water temperature (T), transparency (SD), dissolved oxygen (DO), chemical needs Oxygen (COD), ammonia nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP). Using the single factor index method, it is concluded that the water pollution of M River is serious and the water quality is beyond Grade V of water environment standard. Moreover some indexes of the water quality meet with the standard level, including COD, NH3-N, TN and TP. The Pearson correlation analysis is conducted between water quality indexes and phytoplankton community parameters. After phytoplankton qualitative and quantitative analysis, the phytoplankton community characteristics in Minxin River were analyzed by Dominance index (Y), Shannon-Wiener diversity index (H’), Margalef Species diversity index (d) and Pielou evenness index (J). H’ and TN was a significant positive correlation (r = 0.923, P <0.05); J and COD was a significant positive correlation (r = 0.918, P <0.05); There was a very significant negative correlation between d and water temperature (T), COD, NH3-N, TN (r =-0.881, P <0.01; r =-0.983, P <0.01; r =-0.893, P <0.01; r=-0.962, P<0.01). The result of the research indicates that T, COD, NH3-N and TN are main water quality indexes affecting phytoplankton community structure.


2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2021 ◽  
Vol 869 (1) ◽  
pp. 012037
Author(s):  
F Sulawesty ◽  
G P Yoga ◽  
L Subehi ◽  
R Rosidah

Abstract The occurrence of land changes around Lake Menjer, Central Java Province will affect the condition of water quality subsequently will affect biota, including phytoplankton. The purposes of study was to analyze the composition and abundance of phytoplankton in Menjer Lake regarding to nutrient content i.e. nitrogen and phosphorus. Observations on the phytoplankton community were conducted in July and October 2019 at six locations in Menjer Lake. Water samples were taken at the water surface as much as 10 L filtered using plankton net. Identification was carried out under the inverted microscope Diaphot 300. The abundance was calculated using the Sedgwick Rafter cell counting (SRCC) method. Analysis of the phytoplankton community structure was derived by calculating the Diversity Index, Evenness Index, and Simpson Dominance Index. The nutrient content in Menjer Lake influences the structure of phytoplankton communities quantitatively and qualitatively. Observation showed that the diversity of phytoplankton was low and there was one species dominanted, the result explained that the phytoplankton community in Menjer Lake is unstable and there is ecological pressure on the community. It can be concluded that the improvement of environmental conditions around Menjer Lake is the basis for the sustainable management of Menjer Lake.


2014 ◽  
Vol 4 (1) ◽  
pp. 34-49 ◽  
Author(s):  
Andrew D. Barton ◽  
Ben A. Ward ◽  
Richard G. Williams ◽  
Michael J. Follows

1981 ◽  
Vol 38 (5) ◽  
pp. 524-534 ◽  
Author(s):  
Bruce D. LaZerte ◽  
Susan Watson

We tested the hypothesis that total phytoplankton biomass can predict phytoplankton community structure independent of its taxonomic composition. From a 2-yr study on Lake Memphremagog, Quebec, which exhibits a marked axial trophic gradient, 133 samples were rarefied to uniform count sizes and a range of diversity numbers, based on proportional biomass, was calculated for each. Biomass is a good predictor of evenness (0.7 < R < 0.9), but not species richness (0.1 < R < 0.3), and this prediction is independent of changes in taxonomic composition. Species richness is more directly related to season and changes in taxonomic composition.Key words: diversity, evenness, species richness, phytoplankton


2012 ◽  
Vol 23 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Simone Casali ◽  
Maria do Carmo Calijuri ◽  
Bernard Barbarisi ◽  
Vivian Fróes Renó ◽  
Adriana Gomes Affonso ◽  
...  

AIM: This paper examines the effect of the extreme water level change in 2009 on the structure and diversity of the phytoplankton communities in lakes of the Lower Amazon Floodplain, and compares it to phytoplankton community structure data reported in the literature for 2002 and 2003 high water periods, closer to the normal hydrological conditions. METHODS: Sub-surface integrated water samples for phytoplankton and chlorophyll-a analyses were collected during high and low water phases in 2009. Water temperature (°C), pH, turbidity (NTU) and electrical conductivity (µS.m-1) were measured, and the Shannon diversity index was calculated. RESULTS: The results showed striking differences in taxonomic composition between phases (high and low) and also between normal (2002 and 2003) and extreme (2009) hydrological conditions, all related to the flood pulse intensity. CONCLUSIONS: Extreme water level fluctuations can result in shifts in phytoplankton community structure and diversity. This work represents a valuable contribution to phytoplankton research since presents the community structure under extreme hydrological events in the Amazon floodplain.


2021 ◽  
Vol 56 (1) ◽  
pp. 19-30
Author(s):  
Chenwei Liu ◽  
Xu Sun ◽  
Lianghu Su ◽  
Jinbang Cai ◽  
Longjiang Zhang ◽  
...  

Abstract To find effective measures to control the water quality of the Hongmen Reservoir, it is necessary to better understand its phytoplankton composition, abundance and spatial and temporal distribution. Samples were collected at three sampling sites in January (dry season), May (wet season) and September (normal season) in 2019. Trophic level and stability status were assessed on the basis of the Shannon diversity index (H), species richness (S) and evenness (J) index. The different relationships between phytoplankton and the concentrations of several physicochemical parameters and the main soluble nutrients were evaluated by statistical tests. The results showed that there were 75 species belonging to seven groups of phytoplankton, including Chlorophyta (44 species), Bacillariophyta (12 species), Cyanophyta (9 species) and others (10 species). The phytoplankton community composition belongs to the Chlorophyta–Bacillariophyta–Cyanobacteria type structure; and Microcystis, Anabaena azotica Ley, Aphanizomenon, Melosira granulata were the main contributors to the dissimilarities in the temporal distributions of their communities. The phytoplankton density ranged from 4.42 × 106 to 8.99 × 106 particles/L, with an average of 6.45 × 106 particles/L, and the biomass was 4.42 × 106 ∼ 8.99 × 106 particles/L, with an average of 6.45 × 106 particles/L. The variation ranges of the Shannon–Wiener index (H′), Margalef index (D) and Pielou evenness index (J) were 2.05 ∼ 2.85, 4.12 ∼ 6.60 and 0.61–0.78, respectively. This research shows that the water in the Hongmen Reservoir is clean and that the pollution level is light. The correlation analysis shows that total phosphorus and dissolved oxygen are the main factors affecting phytoplankton community structure in the Hongmen Reservoir.


Sign in / Sign up

Export Citation Format

Share Document