The Pattern of Settlement Distribution in Disaster Prone Areas of Semarang City

2021 ◽  
Vol 23 (2) ◽  
pp. 94-103
Author(s):  
Chindy Dhia Tsabit N ◽  
Bitta Pigawati

The increase in population in Semarang City affects the trends in land use. Limited availability of land in contrast to the increasing demand for land has prompted residents to choose a place to live in a location not following its designation. Several settlements in Semarang City have developed in disaster-prone locations. This study aimed to determine the characteristics of settlements in disaster-prone areas, including aspects of land use, levels of vulnerability to natural hazards, and settlement distribution patterns. The research is a descriptive quantitative study with a spatial approach and utilizes images from remote sensing and Geographic Information systems (GIS). The results show that the settlements covering an area of 5,577 hectares or 33.5% of the total settlement area of Semarang City are in disaster-prone areas. Most disaster-prone areas have a moderate level of vulnerability. There are three patterns of settlement distribution in the study area, namely clustered, random, and dispersed patterns. Most districts in Semarang City have a random pattern of disaster-prone settlements. The settlement distribution pattern reflects the characteristics of each disaster-prone area.

Author(s):  
Giorgio Boni ◽  
Silvia De Angeli ◽  
Angela Celeste Taramasso ◽  
Giorgio Roth

The assessment of the number of people exposed to natural hazards, especially in countries with strong urban growth, is difficult to be updated at the same rate as land use develops. This paper presents a remote sensing based procedure for quick updating the assessment of the population exposed to natural hazards. A relationship between satellite nightlights intensity and urbanization density from global available cartography is first assessed when all data are available. This can be used to extrapolate urbanization data at different time steps, updating exposure each time new nightlights intensity maps are available. As reliability test for the proposed methodology, the number of people exposed to riverine flood in Italy is assessed, deriving a probabilistic relationship between DMSP nightlights intensity and urbanization density from GUF database for the year 2011. People exposed to riverine flood are assessed crossing the population distributed on the derived urbanization density with flood hazard zones provided by ISPRA. The validation on reliable exposures derived from ISTAT data shows good agreement. The possibility to update exposure maps with higher refresh rate makes this approach particularly suitable for applications in developing countries, where exposure may change at sub-yearly scale.


2020 ◽  
Vol 12 (23) ◽  
pp. 3943
Author(s):  
Giorgio Boni ◽  
Silvia De Angeli ◽  
Angela Celeste Taramasso ◽  
Giorgio Roth

The assessment of the number of people exposed to natural hazards, especially in countries with strong urban growth, is difficult to be updated at the same rate as land use develops. This paper presents a remote sensing-based procedure for quickly updating the assessment of the population exposed to natural hazards. A relationship between satellite nightlights intensity and urbanization density from global available cartography is first assessed when all data are available. This is used to extrapolate urbanization data at different time steps, updating exposure each time new nightlights intensity maps are available. To test the reliability of the proposed methodology, the number of people exposed to riverine flood in Italy is assessed, deriving a probabilistic relationship between DMSP nightlights intensity and urbanization density from the GUF database for the year 2011. People exposed to riverine flood are assessed crossing the population distributed on the derived urbanization density with flood hazard zones provided by ISPRA. The validation against reliable exposures derived from ISTAT data shows good agreement. The possibility to update exposure maps with a higher refresh rate makes this approach particularly suitable for applications in developing countries, where urbanization and population densities may change at a sub-yearly time scale.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


2019 ◽  
Vol 125 ◽  
pp. 01005 ◽  
Author(s):  
Mochamad Seandy Alfarabi ◽  
Supriatna ◽  
Masita Dwi Mandini Manessa ◽  
Andry Rustanto ◽  
Yoanna Ristya

Sukabumi District located in Southern West Java known as a region that has diverse natural characteristics, however, it is vulnerable to disasters, especially landslides. Moreover, this study focuses on Cisolok District because this region always occurred landslides every year due to topography aspect. The aim of this study is to analyze the influence of geomorphology to landslide-prone area in Cisolok District to reduce landslides. This study used overlay analysis for geomorphology mapping, while the Frequency Ratio (FR) method used for landslide-prone area mapping. Several physical variables used in this study such as slope, elevation, lithology, geological structure, road network, stream network, land use, soil type, rainfall, and landslide location. The result shows that the study areas have diverse geomorphology units dominated by volcanic slope with steep topography. While landslide-prone area consist of four classes : namely 17,03% low, 62,05% medium, 14,4% high, and 6,51% very high. Variety of landslide vulnerability in study area influenced by terrain form, land genesis, and geomorphic process.


2019 ◽  
Vol 47 (11) ◽  
pp. 1847-1856 ◽  
Author(s):  
Li Chen ◽  
Hsiao-Yu Wang ◽  
Tai-Sheng Wang ◽  
Chang-Huan Kou
Keyword(s):  
Land Use ◽  

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Sign in / Sign up

Export Citation Format

Share Document