THE INFLUENCE OF HAEMOGLOBIN-S AND G6PD DEFICIENCY ON THE ACTIVITY OF THE 17β-HYDROXYSTEROID DEHYDROGENASE OF INTACT HUMAN ERYTHROCYTES

1974 ◽  
Vol 75 (4) ◽  
pp. 793-800
Author(s):  
A. O. Sogbesan ◽  
O. A. Dada ◽  
B. Kwaku Adadevoh

ABSTRACT The 17β-hydroxysteroid dehydrogenase activity in intact erythrocytes of Nigerian patients, in particular with regard to haemoglobin genotypes and G6PD* activity was studied. The G6PD activity of the erythrocyte did not affect the oxidative transformation of testosterone to androstenedione and of oestradiol to oestrone. The reduction (reverse transformation) was inhibited in G6PD-deficient erythrocytes but this inhibition was offset by the addition of 0.025 m glucose to the incubation medium. The per cent oxidation transformation of testosterone was higher in Hb-AA than in Hb-SS erythrocytes. It is suggested that the differences may be a result of either lower enzyme activity in the Hb-SS erythrocytes or of differences in the uptake and possibly binding of sex steroids by intact Hb-SS and Hb-AA erythrocytes.

1974 ◽  
Vol 60 (3) ◽  
pp. 441-443 ◽  
Author(s):  
A. M. GAWIENOWSKI ◽  
J. N. CLARK ◽  
C. N. SRINIVASAN

SUMMARY The activity of 3β-hydroxysteroid dehydrogenase has been determined during various stages of the oestrous cycle in rats. The enzyme activity was high during pro-oestrus and oestrus but low during dioestrus I and II.


1966 ◽  
Vol 36 (1) ◽  
pp. 29-NP ◽  
Author(s):  
A. H. BAILLIE ◽  
M. M. FERGUSON ◽  
D. McK. HART

SUMMARY The human pronephros showed no hydroxysteroid dehydrogenase activity. The human mesonephros, like piscine and amphibian mesonephroi had 16β- and 17β-hydroxysteroid dehydrogenase activity and a possible function of the human mesonephros is suggested. Metanephric kidneys had 3α-, Δ5-3β-, 3β-, 6β-, 16α-, 16β-, and 17β-hydroxysteroid dehydrogenases; 11β-hydroxysteroid dehydrogenase was present in all adult mammalian metanephric kidneys surveyed. 3α-Hydroxysteroid dehydrogenase was selectively present and very active in the proximal and distal convoluted tubules, particularly of the juxta-medullary glomeruli. This function is thought to be related to the excretion of 3α-ketosteroids. 11β-Hydroxysteroid dehydrogenase was confined to the collecting tubules and its possible involvement in the metabolism of cortisol, aldosterone or androgens in the kidney is noted. 17β-Hydroxysteroid dehydrogenase may be concerned in the excretion of the sex steroids; it occurs throughout the nephron. Δ5-3β-, 16α-, and 16β-hydroxysteroid dehydrogenases were not as active histochemically in the kidney as the 3α-, 3β-, 11β- and 17β-hydroxysteroid dehydrogenases.


1964 ◽  
Vol 12 (9) ◽  
pp. 670-673 ◽  
Author(s):  
KÁROLY BALOGH

20α-Hydroxysteroid dehydrogenase activity was localized histochemically in the corpus luteum of the rat by using Nitro-BT as an indicator. Intensive enzyme activity was obseryed in the corpus luteum cells, especially during involution. The placenta and corpora lutea of pregnancy failed to reveal enzyme activity during the last week of gravidity. Other tissues, including endocrine glands, liver and kidneys were also negative. The Present method offers a possibility to identify the sites of progesterone metabolism in the rat ovary at the microscopic level.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1695-1695
Author(s):  
Zhe J. Xu ◽  
Richard O. Francis ◽  
Leonel E. Lerebours Nadal ◽  
Maryam Shirazi ◽  
Vaidehi Jobanputra ◽  
...  

Abstract G6PD deficiency is the most common human enzymopathy, particularly in individuals of African descent. Its epidemiology has not been studied in the Dominican Republic, where many individuals have African ancestry. HIV-infected patients are at risk for adverse effects from G6PD deficiency due to receiving prophylaxis with oxidative drugs, which can induce hemolysis in G6PD-deficient patients. We determined the prevalence of G6PD deficiency, as well as the spectrum of variants, in HIV-infected patients at the Clínica de Familia La Romana, a free HIV clinic in the Dominican Republic. A medical history, chart review, and G6PD testing were performed for 238 consenting HIV-positive adults. A qualitative assay (Trinity Biotech), performed at the clinic, was assessed for color change at 30 and 60 minutes. All blood samples were also shipped to our home institution for quantifying enzyme activity (Trinity Biotech) and molecular testing by Sanger sequencing. The threshold for G6PD deficiency was 5.42 U/g hemoglobin (Hb; i.e. <60% of the mean normal activity level, by WHO criteria). Severe anemia was defined as Hb <8 g/dL. A history of hemolysis was defined as a report of dark urine or jaundice. Statistical analysis was performed using SAS 9.3. The overall prevalence of G6PD deficiency was 8.8% and was similar in males (9.3% [9/97]) and females (8.5% [12/141]), but higher in Haitians (18% [9/50]) as compared to Dominicans (6.4% [12/187]; p=0.01), determined by maternal country of birth. All G6PD-deficient subjects carried the “African” variant (G6PD A-). ∼60% of patients had received and ∼15% were currently on trimethoprim-sulfamethoxazole (TMP-SMX), regardless of G6PD status. Two G6PD-normal patients received Dapsone after TMP-SMX was stopped for allergy or anemia. Univariate analysis identified variables associated with G6PD deficiency in this cohort. A multivariable logistic regression model identified three variables that predicted G6PD status (p<0.05): maternal country of birth (p=0.01), a history of hemolysis (p=0.01), and a history of severe anemia (p=0.03). Using these criteria for screening the cohort, we identified a subset of patients who would benefit most from qualitative G6PD testing. A stepwise screening strategy using clinical history and biochemical testing yielded a diagnostic sensitivity of 94.7% and specificity of 97.2%. In addition, using the combined approach, rather than biochemical testing alone, increased the pretest probability from 8.8% to 15.1% and halved the number of patients needing testing. This algorithm for diagnosing G6PD deficiency may be a cost-effective strategy for improving the quality of care for HIV-infected patients in resource-limited settings. Screening for G6PD deficiency in the developing world is further complicated by lack of access to confirmatory testing. Detecting heterozygous females with intermediate, or even normal, G6PD activity is a diagnostic challenge for enzyme assays. To diagnose heterozygotes definitively, all G6PD exons were sequenced for all subjects with G6PD activity near or below the threshold, with discordant qualitative and quantitative Results, and for selected controls. Of 55 subjects sequenced, 29 had at least one G6PD A- allele. The G6PD A+ allele, also associated with African ancestry, was the only other variant detected. Overall, the 3 Methods agreed well when subjects had low or high G6PD activity, with uncertainty near the quantitative threshold for G6PD deficiency. The sequencing assay detected the G6PD A- allele in all subjects found to be G6PD-deficient by the quantitative assay, but also identified 8 heterozygous females with normal enzyme activity. The qualitative assay, whose sensitivity was increased by assessing color change at 30 minutes, was able to detect the majority (12/19) of heterozygous females, but 6 were heterozygotes with normal enzyme activity. Nonetheless, because genotype does not directly correlate with clinical severity, low activity remains the gold standard for diagnosing G6PD deficiency. Therefore, optimizing qualitative enzyme assays to detect biochemically deficient patients in conjunction with using clinical screening to increase pretest probability may together improve the diagnosis of clinically relevant G6PD deficiency in resource-limited settings. Disclosures: No relevant conflicts of interest to declare.


1979 ◽  
Vol 34 (9-10) ◽  
pp. 726-737 ◽  
Author(s):  
Kunhard Pollow ◽  
Walter Eiger ◽  
Herrmann Heßlinger ◽  
Barbara Pollow

Abstract 17 β-Hydroxysteroid dehydrogenase activity towards estradiol-17 β has been demonstrated in the 105,000 X g supernatant of rabbit uterus. Hydroxylapatite chromatography of the enzyme activity isolated by ammonium sulfate precipitation, gel filtration and DEAE-cellulose chromato­graphy yielded a single 17 β-hydroxysteroid dehydrogenase activity. Further purification of the enzyme preparation by isoelectric focusing resulted in multiple peaks of activity. The molecular weight or the enzyme, calculated from mobility data on Sephadex gel, is approximately 64,000. Some properties of partially purified 17 β-hydroxysteroid dehydrogenase activity have been studied. Estradiol-17 β reacts at a faster rate than testosterone. The Km for estradiol is 4.16X 10-5 mol/1 for the NAD-linked enzyme activity and 4.37 X 10-5 mol/1 when NADP as cofactor was used. The ratio of the maximal velocity for NADP to that for NAD was 1.42. The pH-optimum for estradiol appears between 9.5 and 10.5 and for estrone between 5.5 and 6.5. The enzyme appears to be of the sulfhydryl type.


Blood ◽  
1968 ◽  
Vol 31 (5) ◽  
pp. 589-603 ◽  
Author(s):  
VIRGIL F. FAIRBANKS ◽  
LINDA T. LAMPE

Abstract A new method is described for the graded estimation of G6PD activity in individual erythrocytes. The method appears to offer some technical advantages over other methods. It requires reagents that are neither hazardous nor unstable and such equipment as might be found in the usual hematology laboratory. It appears to be more sensitive than conventional methods for identification of women heterozygous for G6PD deficiency and further substantiates the existence of erythrocyte mosaicism in such individuals.


1979 ◽  
Vol 80 (3) ◽  
pp. 289-301 ◽  
Author(s):  
NICHOLAS BRUCHOVSKY ◽  
GARY LIESKOVSKY

The activities of 5α-reductase and 3α(β)-hydroxysteroid dehydrogenase were assayed in homogenates of eight normal, 21 hyperplastic and four carcinomatous human prostates. Samples consisting of 300–500 μg tissue protein in Tris buffer, pH 7·0, were incubated at 37 °C for 30 min in the presence of 50 nm-[3H]androgen and an NADPH-generating system started with 5 × 10−4 m-NADP. The yield of 5α- and 3α-reduced metabolites, as established by using t.l.c. and g.l.c., gave an estimate of enzyme activity. The formation of metabolites denoting 5α-reductase activity in normal, hyperplastic and carcinomatous tissue respectively was 28·8 ± 47 (s.e.m.), 76·8 ± 8·9 and 3·5 ± 0·7 pmol 30 min−1 mg protein−1; similarly, that denoting 3α(β)-hydroxysteroid dehydrogenase activity was 69·3 ± 6·7, 46·6 ± 5·7 and 38·8 ± 22·1 pmol 30 min−1 mg protein−1. In all normal prostates 5α-reductase activity was lower than 3α(β)-hydroxysteroid dehydrogenase activity. Conversely, in 18 out of 21 hyperplastic prostates, 5α-reductase activity was higher than 3α(β)-hydroxysteroid dehydrogenase activity. The effect of the increase in 5α-reductase activity without a compensatory change in 3α(β)-hydroxysteroid dehydrogenase activity was to alter the mean ratio between 5α-reductase and 3α(β)-hydroxysteroid dehydrogenase activities from 0·47 ± 0·11 in the normal prostate to 1·84 ± 0·19 in hyperplastic tissue. It is inferred that this change may predispose the hyperplastic prostate to asymmetrical rates of androgen metabolism and thereby contribute to the abnormal accumulation of dihydrotestosterone.


1993 ◽  
Vol 139 (1) ◽  
pp. 27-35 ◽  
Author(s):  
S. C. Low ◽  
S. N. Assaad ◽  
V. Rajan ◽  
K. E. Chapman ◽  
C. R. W. Edwards ◽  
...  

ABSTRACT 11β-Hydroxysteroid dehydrogenase (11β-OHSD) catalyses the reversible conversion of corticosterone to inactive 11-dehydrocorticosterone, thus regulating glucocorticoid access to mineralocorticoid and perhaps glucocorticoid receptors in vivo. 11β-OHSD has been purified from rat liver and an encoding cDNA isolated from a liver library. However, several lines of indirect evidence suggest the existence of at least two isoforms of 11β-OHSD, one found predominantly in glucocorticoid receptor-rich tissues and the other restricted to aldosterone-selective mineralocorticoid target tissues and placenta. Here we have examined the effects of chronic (10 day) manipulations of sex-steroid levels on 11β-OHSD enzyme activity and mRNA expression in liver, kidney and hippocampus and present further evidence for the existence of a second 11β-OHSD isoform in kidney. Gonadectomized male and female rats were given testosterone, oestradiol or blank silicone elastomer capsules, controls were sham-operated. In male liver, gonadectomy+ oestradiol treatment led to a dramatic decrease in both 11β-OHSD activity (69 ± 8% decrease) and mRNA expression (97 ± 1% decrease). Gonadectomy and testosterone replacement had no effect on male liver 11β-OHSD. However, in female liver, where 11β-OHSD activity is approximately 50% of that in male liver, gonadectomy resulted in a marked increase in 11β-OHSD activity (120 ± 37% rise), which was reversed by oestradiol replacement but not testosterone treatment. In male kidney, gonadectomy+oestradiol treatment resulted in a marked increase in 11β-OHSD activity (103 ± 4% rise). By contrast, 11β-OHSD mRNA expression was almost completely repressed (99 ± 0·1% decrease) by oestradiol treatment. This effect of oestradiol was reflected in a loss of 11β-OHSD mRNA in all regions of the kidney showing high expression by in-situ hybridization. In female kidney, oestradiol replacement also led to an increase in 11β-OHSD activity (70 ± 15% rise) while mRNA expression fell by 95 ± 3%. None of the treatments had any effect on enzyme activity or mRNA expression in the hippocampus, although transcription starts from the same promoter as liver. We conclude that (i) sex steroids regulate 11β-OHSD enzyme activity and mRNA expression in a tissue-specific manner and (ii) the concurrence of increased enzyme activity with near absent 11β-OHSD mRNA expression in the kidney following oestradiol treatment suggests that an additional gene product is responsible, at least in part, for the high renal activity observed. Journal of Endocrinology (1993) 139, 27–35


1976 ◽  
Vol 54 (7) ◽  
pp. 666-669 ◽  
Author(s):  
Charles P. W. Tsang

The metabolism of [4-14C]estrone in vitro by red blood cells of sheep in late pregnancy and after parturition has been studied. [14C]estrone (600 ng) was incubated with 0.5 ml erythrocytes plus 0.5 ml of Krebs–Ringer phosphate buffer, pH 7.4, for 2 h at 37 °C in an atmosphere of air. After incubation, [3H]estrogens were added to the incubation medium as internal standards for identification and for correction for procedural losses. Metabolites were isolated and purified by chromatography, acetate derivative formation, and recrystallization to a constant 3H/14C ratio. Approximately 20% and 2% of added estrone were converted to 17β-estradiol and 17α-estradiol, respectively. The remainder was recovered unchanged. Daily measurements of 17β-hydroxysteroid dehydrogenase activity in erythrocytes of five ewes, over the period 8 days prepartum to 4 days postpartum, showed no significant change in activity.


Sign in / Sign up

Export Citation Format

Share Document