SPECIAL REQUIREMENTS FOR HORMONE RELEASING INTRAUTERINE DEVICES

1974 ◽  
Vol 77 (1_Suppla) ◽  
pp. S423-S434 ◽  
Author(s):  
Alejandro Zaffaroni

ABSTRACT In order to understand the special requirements for the assessment of human toxicity for hormone releasing intrauterine devices it is necessary first to describe the constitution of one such system. The uterine progesterone system developed in our laboratories is the hormonal intrauterine system which has been most extensively tested clinically. It releases 50 μg per day of progesterone in continuous form. It has been designed to have a one-year period of functional life and it constitutes the first once a year hormonal fertility control agent and the first hormonal system which is target specific. A number of unique features in the design and construction of this new and intrinsically safe hormonal system are described.

1955 ◽  
Vol 87 (3) ◽  
pp. 121-123 ◽  
Author(s):  
C. H. Buckner

The greatest predatory effect of small mammals is exerted upon insects that spend a portion of their life cycle on the ground or in the soil. Sawflies afford ample opportunity for mammalian predation, since they drop to the ground as mature larvae and spin cocoons in the soil. Such sawflies as Neodiprion abietis Harr., which remain within the cocoon for about three weeks, undergo only moderate risk of being preyed upon by small mammal. However, Pristiphora erichsonii (Htg.) remains within the cocoon from about mid-August until the following June, or even over more than one year, thus greatly extending the vulnerable period. Earlier investigations suggest that small mammals may comprise the largest single biological control agent acting against this insect (Graham 1928, Lejeune 1951), but the exact role of mammalian predators of forest insects has yet to be established.


Contraception ◽  
2017 ◽  
Vol 96 (2) ◽  
pp. 99-105 ◽  
Author(s):  
J.N. Sanders ◽  
D.K. Turok ◽  
P.A. Royer ◽  
I.S. Thompson ◽  
L.M. Gawron ◽  
...  

2007 ◽  
Vol 34 (3) ◽  
pp. 239 ◽  
Author(s):  
Stuart McLean ◽  
Susan Brandon ◽  
Roger Kirkwood

Cabergoline is a potent inhibitor of prolactin release and a potential fertility control agent for foxes. To understand how cabergoline could behave in baits deployed for fox control, we conducted laboratory and field trials to investigate the stability of cabergoline when (1) in solution, (2) injected into a bait (deep-fried liver and Foxoff®) and (3) exposed to a range of environmental conditions, including burial. Cabergoline, dissolved in a 1% acetic acid solution, and its carboxylic acid hydrolysis product can be assayed using high-performance liquid chromatography. When stored at 4°C and at room temperature, cabergoline in solution was stable for up to 36 days. When stored under cool (≤15°C), dry conditions, cabergoline (800 µg) in commercial Foxoff® and deep-fried ox-liver baits was stable for 28 and 7 days, respectively; stability was reduced by increases in temperature (tested up to 40°C) and humidity. Recovery of cabergoline from buried baits exposed to a range of field conditions decreased rapidly in the first week, but after 56 days remained detectable at levels of 6–22% of the injected amounts. This study has important implications for baiting campaigns that use cabergoline for fox control.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1102d-1102
Author(s):  
Chi Won Lee ◽  
Benjamin Liang ◽  
Kenneth L. Goldsberry ◽  
Ralph R. Baker ◽  
Phillip L. Chapman

This study was carried out to determine the influences of planting date (June, July) and soil applications of Trichoderma harzianum (strain T-95) and a fungicide containing ethazole + thiophanate (BanrotR) on flower production of standard carnation cvs. Improved White and Tanga. The one-year production data showed that the fungicide treatment increased flower yield by 7.3% (33.5 flowers/m2) and 4.8% (23.3 flowers/m2) in Improved White and Tanga, respectively, for June planting. Improved White produced more flowers and fancy grades when planted in July as compared to June planting. Planting date did not influence either the yield or the flower quality in Tanga. The effectiveness of Trichoderma as a biological control agent on flower yield and quality was not evident. The patterns of weekly flower production for the two cultivars were determined and graphically illustrated.


1997 ◽  
Vol 9 (1) ◽  
pp. 163 ◽  
Author(s):  
Glenys Oogjes

Proposals to manipulate the fertility of wild, free-living animals extend the domination humans already exercise over domesticated animals. Current lethal methods for population control include poisoning, trapping, hunting, dogging, shooting, explosives, fumigants, and deliberately introduced disease. Animal welfare interests are based on individual animal suffering, but those interests are often overshadowed by labelling of groups of animals as pests, resource species, national emblem or endangered species. Public concern for animal welfare and acceptance of new population control methods will be influenced by such labels. The animal welfare implications of new population control technology must be balanced against the existing inhumane lethal methods used. It will be difficult to resolve the dilemma of a mechanism for disseminating a fertility control agent that will cause some animal suffering (e.g. a genetically-manipulated myxoma virus for European rabbits), yet may reduce future rabbit populations and therefore the number suffering from lethal methods. An Animal Impact Statement is proposed as a tool to assist debate during development of fertility control methods and for decision making prior to their use. A comprehensive and objective Animal Impact Statement may introduce an ethic that moves the pendulum from attitudes that allow sentient animals to be destroyed by any and all available means, towards a more objective selection of the most effective and humane methods.


2010 ◽  
Vol 32 (1) ◽  
pp. 95 ◽  
Author(s):  
Steven J. Lapidge ◽  
Charlie T. Eason ◽  
Simon T. Humphrys

Since their introduction to Australia in 1840 the one-humped camel, Camelus dromedarius, has gone from the colonist’s companion to a conservationist’s conundrum in the fragile arid ecosystems of Australia. Current management techniques are failing to curb present population growth and alternatives must be sought. This review assess the applicability of currently registered and developmental vertebrate pesticides and fertility control agents for camel control, as well as examining the potential usefulness of known C. dromedarius diseases for biological control. Not surprisingly, little is known about the lethality of most vertebrate pesticides used in Australia to camels. More has been published on adverse reactions to pharmaceuticals used in agriculture and the racing industry. An examination of the literature on C. dromedarius diseases, such as camel pox virus, contagious ecthyma and papillomatosis, indicates that the infections generally result in high morbidity but not necessarily mortality and this alone may not justify their consideration for use in Australia. The possibility exists that other undiscovered or unstudied biological control agents from other camilid species may offer greater potential for population control. As a long-lived species the camel is also not ideally suited to fertility control. Notwithstanding, anti-fertility agents may have their place in preventing the re-establishment of camel populations once they have been reduced through mechanical, biological or chemical means. Delivery of any generic chemical or fertility control agent will, however, require a species-tailored pathway and an appropriate large-scale deployment method. Accordingly, we put forward avenues of investigation to yield improved tools for camel control.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kiranjeet Kaur ◽  
Vijay Prabha

The rapidly increasing global population has bowed the attention of family planning and associated reproductive health programmes in the direction of providing a safe and reliable method which can be used to limit family size. The world population is estimated to exceed a phenomenal 10 billion by the year 2050 A.D., thus presenting a real jeopardy of overpopulation with severe implications for the future. Despite the availability of contraceptive methods, there are over one million elective abortions globally each year due to unintended pregnancies, having devastating impact on reproductive health of women worldwide. This highlights the need for the development of newer and improved contraceptive methods. A novel contraceptive approach that is gaining substantial attention is “immunocontraception” targeting gamete production, gamete outcome, or gamete function. Amongst these, use of sperm antigens (gamete function) seems to be an exciting and feasible approach. However, the variability of immune response and time lag to attain titer among vaccinated individuals after active immunization has highlighted the potential relevance of preformed antibodies in this league. This review is an attempt to analyze the current status and progress of immunocontraceptive approaches with respect to their establishment as a future fertility control agent.


2011 ◽  
Vol 7 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Jemma K. Cripps ◽  
Michelle E. Wilson ◽  
Mark A. Elgar ◽  
Graeme Coulson

Lactation is the most energetically expensive component of reproduction in mammals. Theory predicts that reproducing females will adjust their behaviour to compensate for increased nutritional demands. However, experimental tests are required, since comparisons of the behaviour of naturally reproducing and non-reproducing females cannot distinguish between true costs of reproduction, individual differences or seasonal variation. We experimentally manipulated reproduction in free-ranging, eastern grey kangaroos ( Macropus giganteus ), using a fertility control agent. Our novel field experiment revealed that females altered their behaviour in direct response to the energetic demands of reproduction: reproducing females increased bite rates, and thus food intake, when the energetic demands of lactation were highest. Reproducing females did not reduce the time spent on vigilance for predators, but increased their forage intake on faecal-contaminated pasture, thereby increasing the risk of infection by gastrointestinal parasites—a largely unrecognized potential cost of reproduction.


Sign in / Sign up

Export Citation Format

Share Document