Metformin suppressed the proliferation of prostate cancer cells in vitro and reduced prostate tumor growth in vivo under low-fat and, especially, under high-fat fed conditions

2016 ◽  
Author(s):  
Andre Sarmento-Cabral ◽  
Fernando Lopez-Lopez ◽  
Justo P Castano ◽  
Raul M Luque
Urology ◽  
2015 ◽  
Vol 85 (1) ◽  
pp. 273.e9-273.e15 ◽  
Author(s):  
Minyong Kang ◽  
Hye Sun Lee ◽  
Young Ju Lee ◽  
Woo Suk Choi ◽  
Yong Hyun Park ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 67 ◽  
Author(s):  
Ingrid Labouba ◽  
Alexis Poisson ◽  
Julie Lafontaine ◽  
Nathalie Delvoye ◽  
Philippe O Gannon ◽  
...  

2017 ◽  
Vol 16 (3) ◽  
pp. e1299-e1300
Author(s):  
L. Astrologo ◽  
E. Zoni ◽  
S. Karkampouna ◽  
P. Gray ◽  
I. Klima ◽  
...  

2019 ◽  
Author(s):  
◽  
Velaphi Clement Thipe

The main goal of this dissertation was to explore the development of a new generation of green nanoformulations through the production of biocompatible palladium nanoparticles using resveratrol to treat, image and evaluate the efficacy of the formulations in prostate cancer cells with minimal toxicity to surrounding normal tissues. This dissertation is classified into three parts with three main objectives of the producing and characterizing resveratrol-derived phenols and polyphenols encapsulated palladium nanoparticles (Res-PdNPs) for the imaging and treatment of prostate cancer. Rigorous studies were performed for the optimization of the synthesis to achieve increased resveratrol-derived phenols and polyphenols corona loading on the palladium nanoparticle surface capable of providing adjuvant therapeutic benefits through delivering potent doses of both resveratrol phenols and nanoparticles directly to prostate cancer cells. A total of four formulations were produced Res-PdNP-1 (resveratrol-palladium nanoparticles), Res-PdNP-2 (increased resveratrol corona loaded palladium nanoparticles), Res-PdNP-3 (resveratrol-gum arabic stabilized palladium nanoparticles) and Res-PdNP-4 (increased resveratrol corona loaded and compacted with gum arabic stabilized palladium nanoparticles), respectively. Electron microscopic (TEM) results revealed that role of gum arabic was not limited to the stability of the nanoparticles but also facilitated the crystallization of the produced palladium nanoparticles (Res-PdNP-3 and Res-PdNP-4) and subsequently provided a supportive matrix for increased resveratrol phenols loading capacity. In vitro evaluation of the Res-PdNPs showed that Res-PdNP-1 and Res-PdNP-2, were not stable in serum while Res-PdNP-3 and Res-PdNP-4 maintained superior stability, thus ruling out further analysis using Res-PdNP-1 and Res-PdNP-2. The LC-MS/MRM results confirmed increased resveratrol phenols loading in Res-PdNP-4 when compared to Res-PdNP-3; consequently Res-PdNP-4 nanoparticles were confirmed as the ideal nanoformulation to improve the bioavailability, biodistribution and emblematize as an adjuvant therapy to induce selective and specific tumor-cell-death. The prostate tumor selective and specific affinity of Res-PdNP-4 nanoparticles through numerous cellular internalization studies undoubtedly revealed that Res-PdNP-4 nanoparticles can be internalized into prostate cancer cells via laminin receptor-mediated endocytosis which are receptors overexpressed on prostate cancer cells compared to normal cells. The Res-PdNP-4 nanoparticles were evaluated to investigate in vitro cellular toxicity against both prostate cancer (PC-3) cells and normal human aortic endothelial cells (HAEC). Results indicated that Res-PdNP-4 exhibited comparable anticancer efficacy against prostate cancer cells as chemotherapeutic drugs (cisplatin and etoposide). However, the results showed that cisplatin and etoposide treatments were highly toxic to normal cells while Res-PdNP-4 nanoparticles presented no toxicity further corroborating laminin receptor-mediated delivery, making Res-PdNP-4 nanoparticles selective and specific to prostate cancer cells. Res-PdNP-4 nanoparticles were investigated in vivo using a human prostate tumor-bearing severely combined immunodeficient (SCID) male mice as the animal model to evaluate Res-PdNP-4 nanoparticles ability to control or reduce prostate tumor size. The in vivo results of Res-PdNP-4 showed a good dose response which was well tolerated by the animals, as no animal health problems and discomfort was observed as evidenced by body weight/eating habits of animals. Although further studies are required to determine a better dose to see increased efficacy. This study was performed through intravenous (IV) administration of the Res-PdNP-4, intraperitoneal (IP) delivery and direct injection into the tumor may show a better response as has been the case with many different types of nanoparticles. In conclusion, the therapeutic efficacy results showed that Res-PdNP-4 have significant therapeutic effect and are able to control the tumor size in comparison to the saline control and free resveratrol treated groups. This was due to the high corona of resveratrol-derived phenols and polyphenols on the PdNPs facilitating effectively enhanced delivery of resveratrol with high bioavailability, giving an advantage in tumor therapy.


2007 ◽  
Vol 177 (4S) ◽  
pp. 223-223
Author(s):  
Mototsugu Muramaki ◽  
Michael Cox ◽  
Hideaki Miyake ◽  
Masato Fujisawa ◽  
Martin E. Gleave

Author(s):  
Denisa Baci ◽  
Antonino Bruno ◽  
Caterina Cascini ◽  
Matteo Gallazzi ◽  
Lorenzo Mortara ◽  
...  

Abstract Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.


Sign in / Sign up

Export Citation Format

Share Document