Is there a threshold of Vitamin D sufficiency that can prevent secondary hyperparathyroidism?

2017 ◽  
Author(s):  
Andre Amaral ◽  
Tatiana Nunes ◽  
Joao Anselmo ◽  
Rui Cesar
JMS SKIMS ◽  
2011 ◽  
Vol 14 (2) ◽  
pp. 40-42
Author(s):  
Muzafar Maqsood Wani ◽  
Imtiaz Ahmed Wani

Major biologic function of activated vitamin D is to maintain normal blood levels of calcium and phosphorus, thus regulating bone mineralization. Research suggests that vitamin D may help in immunomodulation, regulating cell growth and 1,4 differentiation as well as some diverse unspecified functions. Overt vitamin D deficiency leads to hypocalcaemia, secondary hyperparathyroidism and increased bone turnover, which in prolonged and severe cases may cause rickets in children and osteomalacia in elderly.... JMS 2011;14(2):40-42


2019 ◽  
Vol 17 (6) ◽  
pp. 610-617 ◽  
Author(s):  
Giovanna Muscogiuri ◽  
Luigi Barrea ◽  
Barbara Altieri ◽  
Carolina Di Somma ◽  
Harjit pal Bhattoa ◽  
...  

Vitamin D and calcium are considered crucial for the treatment of bone diseases. Both vitamin D and calcium contribute to bone homeostasis but also preserve muscle health by reducing the risk of falls and fractures. Low vitamin D concentrations result in secondary hyperparathyroidism and contribute to bone loss, although the development of secondary hyperparathyroidism varies, even in patients with severe vitamin D deficiency. Findings from observational studies have shown controversial results regarding the association between bone mineral density and vitamin D/calcium status, thus sparking a debate regarding optimum concentrations of 25-hydroxyvitamin D and calcium for the best possible skeletal health. Although most of the intervention studies reported a positive effect of supplementation with calcium and vitamin D on bone in patients with osteoporosis, this therapeutic approach has been a matter of debate regarding potential side effects on the cardiovascular (CV) system. Thus, the aim of this review is to consider the current evidence on the physiological role of vitamin D and calcium on bone and muscle health. Moreover, we provide an overview on observational and interventional studies that investigate the effect of vitamin D and calcium supplementation on bone health, also taking into account the possible CV side-effects. We also provide molecular insights on the effect of calcium plus vitamin D on the CV system.


1990 ◽  
Vol 123 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Yusuke Tsukamoto ◽  
Teiichi Tamura ◽  
Michiyo Saitoh ◽  
Yumiko Takita ◽  
Toshiaki Nakano

Abstract. To examine the hormonal regulation of the ATP-dependent Ca2+ pump in the kidneys, the ATP-dependent Ca2+ uptake by the basolateral membrane vesicles in the renal cortex was measured using radioactive calcium (45Ca2+) in rats with vitamin D deficiency or rats undergoing thyroparathyroidectomy. The Vmax of the Ca2+ pump activity was increased not only by administering calcitriol, but also by normalizing the serum calcium level in vitamin D-deficient rats. PTH suppressed the Ca2+ pump activity in normocalcemic vitamin D-deficient rats. Thyroparathyroidectomy did not affect the Ca2+ pump activity in the kidneys of normal rats. It was concluded that the ATP-dependent Ca2+ pump activity was depressed by secondary hyperparathyroidism in vitamin D-deficient rats.


2005 ◽  
Vol 15 (10) ◽  
pp. 1389-1395 ◽  
Author(s):  
Joan Sánchez-Hernández ◽  
Juan Ybarra ◽  
Ignasi Gich ◽  
Alberto De Leiva ◽  
Xavier Rius ◽  
...  

Author(s):  
Daniela Vicinansa MÔNACO-FERREIRA ◽  
Vânia Aparecida LEANDRO-MERHI ◽  
Nilton César ARANHA ◽  
Andre BRANDALISE ◽  
Nelson Ary BRANDALISE

ABSTRACT Background : Roux-en-Y gastric bypass patients can experience changes in calcium metabolism and hyperparathyroidism secondary to vitamin D deficiency. Aim : To evaluate nutritional deficiencies related to the calcium metabolism of patients undergoing gastric bypass with a 10-year follow-up. Method : This is a longitudinal retrospective study of patients submitted to Roux-en-Y gastric bypass at a multidisciplinary clinic located in the Brazilian southeast region. The study investigated the results of the following biochemical tests: serum calcium, ionized calcium, vitamin D, and parathormone (PTH). The generalized estimating equations (GEE) determined the nutritional deficiencies using a significance level of 5%. Results : Among the patients who finished the study (120 months), 82.86% (n=29) had vitamin D deficiency, and 41.94% (n=13) had high PTH. Postoperative time had a significant effect on PTH (p=0.0059). The percentages of patients with vitamin D, serum calcium, and ionized calcium deficiencies did not change significantly over time. Conclusion : One of the outcomes was vitamin D deficiency associated with secondary hyperparathyroidism. These findings reaffirm the importance of monitoring the bone metabolism of patients submitted to Roux-en-Y gastric bypass. HEADINGS: Calcium deficiency. Vitamin D deficiency. Secondary hyperparathyroidism.


2018 ◽  
Vol 21 (2) ◽  
pp. 12-22 ◽  
Author(s):  
Lilit V. Egshatyan ◽  
Natalya G. Mokrisheva

Background: secondary hyperparathyroidism (SHPT) is an early complication of chronic kidney disease (CKD). Maintaining the level of 25(OH)D and parathyroid hormone concentrations in the target range reduce its associated complications (fractures and cardiovascular calcification). Aims: to examine the effectiveness of vitamin D supplementation and selective vitamin D receptor agonists treatment on SHPT in CKD. Material and methods: prospective observational study to evaluate the efficacy and safety of vitamin D therapy SHPT in 54 in patients with CKD. The first phase (24 weeks) – treatment of suboptimal 25-hydroxycalciferol (25(OH)D) levels. The second (16 weeks) – treatment colecalciferol-resistant SHPT by combination of cholecalciferol with paricalcitol. Blood samples were taken to assess parathyroid hormone (PTH), 25(OH)D, creatinine, calcium, phosphorus levels and calcium excretion. Results: After 8 weeks of cholecalciferol treatment all patients achieved 25(OH)D levels above 20 ng/ml, however 78% of patients still had SHPT. After 16 weeks, the decrease of PTH was achieved in all patients, but significantly only in patients with CKD 2 (19.2%, p< 0.01) and 3 (31%, p <0.05), compared with CKD 4 (17%, p >0.05). After 24 weeks of therapy, PTH normalized in all patients with CKD 2, in 15 (79%) with CKD 3 and in 9 (50%) patients with CKD 4. Cholecalciferol treatment resulted in a substantial increase in 25(OH)D levels with minimal or no impact on calcium, phosphorus levels and kidney function. After 24 weeks we initiated combination therapy (cholecalciferol and paricalcitol) for patients with colecalciferol-resistant SHPT (n=13). PTH levels decreased from 149.1±13.4 to 118.2±14.1 pg/ml at 8 weeks, and to 93.1±9.7 pg/ml (p <0.05) at 16 weeks of treatment. No significant differences in serum calcium, phosphorus or urinary calcium levels. Normalization of PTH was achieved in all patients with CKD 3 and in 8 patients with stage 4. One patient with CKD 4 needed an increase in paricalcitol dose. Conclusion: Cholecalciferol can be used in correcting vitamin D deficiency in patients with all stages of CKD, however, its effectiveness in reducing PTH in stage 4 is limited. Selective analogs, such as paricalcitol, were well-tolerated and effectively decreased PTH levels.


2013 ◽  
pp. 1-1
Author(s):  
Natalie Chand ◽  
Gina Weston Petrides ◽  
Abigail Evans ◽  
Anthony Skene ◽  
Joe Begley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document