Proton Beam Therapy: The future of radiotherapy?

Author(s):  
Yen Ching Chang
2020 ◽  
Vol 21 (18) ◽  
pp. 6492 ◽  
Author(s):  
Jonathan R. Hughes ◽  
Jason L. Parsons

FLASH radiotherapy is the delivery of ultra-high dose rate radiation several orders of magnitude higher than what is currently used in conventional clinical radiotherapy, and has the potential to revolutionize the future of cancer treatment. FLASH radiotherapy induces a phenomenon known as the FLASH effect, whereby the ultra-high dose rate radiation reduces the normal tissue toxicities commonly associated with conventional radiotherapy, while still maintaining local tumor control. The underlying mechanism(s) responsible for the FLASH effect are yet to be fully elucidated, but a prominent role for oxygen tension and reactive oxygen species production is the most current valid hypothesis. The FLASH effect has been confirmed in many studies in recent years, both in vitro and in vivo, with even the first patient with T-cell cutaneous lymphoma being treated using FLASH radiotherapy. However, most of the studies into FLASH radiotherapy have used electron beams that have low tissue penetration, which presents a limitation for translation into clinical practice. A promising alternate FLASH delivery method is via proton beam therapy, as the dose can be deposited deeper within the tissue. However, studies into FLASH protons are currently sparse. This review will summarize FLASH radiotherapy research conducted to date and the current theories explaining the FLASH effect, with an emphasis on the future potential for FLASH proton beam therapy.


2019 ◽  
Author(s):  
Gustavo Rangel ◽  
Mostafa Shahein ◽  
Thiago Felicio ◽  
Guilhermo Malave ◽  
Nyall London ◽  
...  

Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Annie Chan ◽  
Paul Busse ◽  
Urmila Kamat ◽  
Derrick Lin ◽  
Norbert Liebsch

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1862
Author(s):  
Eva Biewald ◽  
Tobias Kiefer ◽  
Dirk Geismar ◽  
Sabrina Schlüter ◽  
Anke Manthey ◽  
...  

Despite the increased risk of subsequent primary tumors (SPTs) external beam radiation (EBRT) may be the only therapeutic option to preserve a retinoblastoma eye. Due to their physical properties, proton beam therapy (PBT) offers the possibility to use the effectiveness of EBRT in tumor treatment and to decisively reduce the treatment-related morbidity. We report our experiences of PBT as rescue therapy in a retrospectively studied cohort of 15 advanced retinoblastoma eyes as final option for eye-preserving therapy. The average age at the initiation of PBT was 35 (14–97) months, mean follow-up was 22 (2–46) months. Prior to PBT, all eyes were treated with systemic chemotherapy and a mean number of 7.1 additional treatments. Indication for PBT was non-feasibility of intra-arterial chemotherapy (IAC) in 10 eyes, tumor recurrence after IAC in another 3 eyes and diffuse infiltrating retinoblastoma in 2 eyes. Six eyes (40%) were enucleated after a mean time interval of 4.8 (1–8) months. Cataract formation was the most common complication affecting 44.4% of the preserved eyes, yet 77.8% achieved a visual acuity of >20/200. Two of the 15 children treated developed metastatic disease during follow-up, resulting in a 13.3% metastasis rate. PBT is a useful treatment modality as a rescue therapy in retinoblastoma eyes with an eye-preserving rate of 60%. As patients are at lifetime risk of SPTs consistent monitoring is mandatory.


Author(s):  
A.L. Polishchuk ◽  
D.H. Char ◽  
V. Weinberg ◽  
I.K. Daftari ◽  
T.B. Cole ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 903
Author(s):  
Antonella Cacchione ◽  
Angela Mastronuzzi ◽  
Andrea Carai ◽  
Giovanna Stefania Colafati ◽  
Francesca Diomedi-Camassei ◽  
...  

Rosette-forming glioneuronal tumors (RGNTs) are rare, grade I, central nervous system (CNS) tumors typically localized to the fourth ventricle. We describe a 9-year-old girl with dizziness and occipital headache. A magnetic resonance imaging (MRI) revealed a large hypodense posterior fossa mass lesion in relation to the vermis, with cystic component. Surgical resection of the tumor was performed. A RGNT diagnosis was made at the histopathological examination. During follow-up, the patient experienced a first relapse, which was again surgically removed. Eight months after, MRI documented a second recurrence at the local level. She was a candidate for the proton beam therapy (PBT) program. Three years after the end of PBT, the patient had no evidence of disease recurrence. This report underlines that, although RGNTs are commonly associated with an indolent course, they may have the potential for aggressive behavior, suggesting the need for treatment in addition to surgery. Controversy exists in the literature regarding effective management of RGNTs. Chemotherapy and radiation are used as adjuvant therapy, but their efficacy management has not been adequately described in the literature. This is the first case report published in which PBT was proposed for adjuvant therapy in place of chemotherapy in RGNT relapse.


Sign in / Sign up

Export Citation Format

Share Document